
1

M
o

d
e

lin
g

 S
e

m
an

tic W
e

b
 S

e
rvice

s
d

e
 B

ru
ijn

 · Fe
n

se
l · K

e
rrig

an
K

e
lle

r · Lau
se

n
 · S

ciclu
n

a

123

Modeling
Semantic
Web Services
The Web Service Modeling Language

| | | | |  |    | | | | | |    |    | |  | | |    | |  | | |  | | | | | | | | | | |  | |   | | | | | |    |

|    | |  | | |    | |  | | |  | | | | | | | | | | | | |   | | | | | |    |  | | |  | | | | | | | | | | |  | |

| | | | | |  |    | | | | | |    | | |  | | |    | |  | | |  | | | | | | | | | | |  | |   | | | | | |    | | | |

| | |    | |  | | |  | | | | | | | | | | |  | |  | | | | | |    |  | | |  | | | | | | |  | | | | | | | | | | |  | |

| | | | | |  | | | |  | | |    | |  | | |  | | | | | | | | | | |  | |   | | | | | | |  | | |  | | | | | | | | | | |

Jos de Bruijn · Dieter Fensel
Mick Kerrigan · Uwe Keller
Holger Lausen · James Scicluna



Modeling Semantic Web Services



Jos de Bruijn · Dieter Fensel · Mick Kerrigan

Uwe Keller · Holger Lausen · James Scicluna

Modeling
Semantic
Web Services

The Web Service Modeling Language

ABC



Jos de Bruijn

Free University of Bozen-Bolzano
Faculty of Computer Science
KRDB Research Centre
Piazza Domenicani, 3
39100 Bozen-Bolzano BZ
Italy
debruijn@inf.unibz.it

Dieter Fensel
Mick Kerrigan
Uwe Keller
Holger Lausen
James Scicluna

STI Innsbruck
ICT - Technologiepark
Technikerstr. 21a
6020 Innsbruck
Austria
dieter.fensel@sti2.at
mick.kerrigan@sti2.at
uwe.keller@sti2.at
holger.lausen@seekda.com
james.scicluna@sti2.at

ISBN: 978-3-540-68169-4 e-ISBN: 978-3-540-68172-4

Library of Congress Control Number: 2008926603

ACM Computing Classification: H.3.5, K.4.4, I.2.4, D.2.12

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover design: KünkelLopka GmbH, Heidelberg

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



Preface

Motivation

Semantic Web services promise to automate tasks such as discovery, media-
tion, selection, composition, and invocation of services, enabling fully flexible
automated e-business. The description of Web services plays an important
role in the realization of his vision. The Web Service Modeling Ontology
(WSMO) identifies the conceptual elements that are required for such descrip-
tions, thereby providing the means for Web service description from a user
point of view. However, the automation of Web service-related tasks requires
a suitable concrete formal language. The formal description of Web services,
as well as user goals, has three major aspects: static background knowledge
in the form of ontologies, the functional description of the service (suitable
for discovery and high-level composition), and the behavioral description of
the service (suitable for selection, mediation, composition, and invocation). In
this book we present a language framework addressing all three aspects. To
address the problem of ontology description we present a language framework
incorporating the Description Logic and Logic Programming formal language
paradigms and the RDF Schema and OWL Semantic Web ontology languages.
For the functional description of services we present a flexible framework based
on Abstract State Spaces, which can be combined with a number of logical
languages. Finally, we address the problem of behavioral description by pre-
senting a flexible expressive language that has its conceptual roots in Abstract
State Machines.

Goal

The usage of Web services requires a significant amount of human intervention
due to the lack of support for the automation of tasks such as discovery, com-
position, and invocation. Key to the automation of such tasks is the availabil-
ity of a means to describe user goals, Web services, and their interrelationships



VI Preface

in a formal, machine-processable way. This book lays the foundations for un-
derstanding the requirements on the description of the various aspects related
to Semantic Web services. It introduces the Web Service Modeling Language
(WSML), which provides means for describing the functionality and behavior
of Web services, as well as the underlying business knowledge in the form of
ontologies, with a conceptual grounding in the Web Service Modeling Ontol-
ogy (WSMO).

Target Audience

This book is suitable for professionals, as well as academic and industrial
researchers, who have an interest in Semantic Web services. The book is aimed
at providing insight into the area of Semantic Web services, and especially the
Web Service Modeling Language to persons with various levels of knowledge.
On the one hand, the book gives a comprehensive overview of the concepts
and challenges in the area of Semantic Web services, gives an overview of the
Web Service Modeling Ontology, introduces the concepts behind and syntax
of the Web Service Modeling Language WSML, and describes the enabling
technologies. On the other hand, the book provides an in-depth treatment of
the semantic foundations and logical grounding of the ontology, functional,
and behavioral descriptions in WSML.

Acknowledgments

The work presented in this book has been funded in part by the European
Commission under the Knowledge Web (FP6-507482) and DIP (FP6-507483)
projects.

We would like to thank all members of the WSML working group, and Axel
Polleres in particular, for their invaluable contribution to the development of
the WSML language. Thanks to Stefan Grimm and Gabor Nagypal for their
contributions to Section 8.3 and Nathalie Steinmetz for her contribution to
Section 8.4, as well as her ongoing efforts in editing the WSML language
reference.

The authors, March 2008



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Outline of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Part I Basics

2 Semantic Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Semantic Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Web Service Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Web Service Usage Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Challenges in Web Service description . . . . . . . . . . . . . . . . . . . . . . 20

3 The Web Service Modeling Ontology . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Web Service and Goal Description . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Basic Usage Patterns of WSMO . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 The Basic WSML Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1 Components of Web Service Descriptions . . . . . . . . . . . . . . . . . . . 30
4.2 Design Principles of WSML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 WSML Language Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 WSML Language and Surface Syntax . . . . . . . . . . . . . . . . . . . . . . 38
4.5 XML and RDF Exchange Syntaxes . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Leveraging RDF and OWL Ontologies in WSML Web Services 59

Part II The WSML Description Components



VIII Contents

5 Description of Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1 Relating Conceptual and Logical Syntaxes . . . . . . . . . . . . . . . . . . 66
5.2 Semantics of WSML Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Layering of WSML Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Combination with RDFS and OWL DL . . . . . . . . . . . . . . . . . . . . 88

6 Functional Description of Services . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1 Approaches to Functional Description . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Set-Based Web Service Description . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 State-Based Web Service Description . . . . . . . . . . . . . . . . . . . . . . . 107

7 Behavioral Description of Services . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.1 Behavioral Model of Choreographies . . . . . . . . . . . . . . . . . . . . . . . 118
7.2 Overview of the WSML Choreography Language . . . . . . . . . . . . 119
7.3 Formalizing WSML Choreographies . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4 Relating Functional and Behavioral Descriptions . . . . . . . . . . . . 129

Part III Enabling Technologies for WSML

8 Reasoning with WSML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.1 Ontology Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.2 Enabling Ontology Reasoning with WSML . . . . . . . . . . . . . . . . . 139
8.3 Reasoning with Rule-Based Variants . . . . . . . . . . . . . . . . . . . . . . . 142
8.4 Reasoning with WSML-DL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9 Creating and Managing WSML Descriptions . . . . . . . . . . . . . . 159
9.1 Editing and Browsing WSML Descriptions . . . . . . . . . . . . . . . . . . 161
9.2 Validating WSML Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.3 Testing WSML Ontologies, Web Services and Goals . . . . . . . . . . 170
9.4 Interfacing with Semantic Execution Environments . . . . . . . . . . 173

10 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.1 Semantic Web Service Description with WSML. . . . . . . . . . . . . . 177
10.2 Ongoing Standardization Efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



List of Figures

1.1 Scenario of the running example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Example RDF graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 RDFS ontology of persons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Basic Web service usage process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Elements of a Web service description . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Web service usage process in WSMO. . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Elements of a WSML Web service description . . . . . . . . . . . . . . . . 30
4.2 The match operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 The WSML variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 WSML descriptions as part-whole hierarchies . . . . . . . . . . . . . . . . 58

6.1 Accuracy versus complexity of service descriptions . . . . . . . . . . . . 100
6.2 Abstract model of Web services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.1 A schematic view of knowledge-based systems . . . . . . . . . . . . . . . . 137
8.2 Conceptual architecture of the WSML2Reasoner framework . . . . 142
8.3 Meta-level predicates in WSML2Reasoner . . . . . . . . . . . . . . . . . . . 148
8.4 Reconstructing the WSML molecule semantics in Datalog . . . . . 149
8.5 Transformation pipeline for rule-based variants . . . . . . . . . . . . . . . 154
8.6 Transformation pipeline for WSML-DL. . . . . . . . . . . . . . . . . . . . . . 157

9.1 WSML text editor showing an ontology . . . . . . . . . . . . . . . . . . . . . 162
9.2 WSML form-based editor showing a service description . . . . . . . . 164
9.3 WSML visualizer showing an ontology . . . . . . . . . . . . . . . . . . . . . . 165
9.4 WSML visualizer showing an ontology concept . . . . . . . . . . . . . . . 166
9.5 Outline view with WSML text editor showing an ontology . . . . . 168
9.6 WSML navigator showing a WSML project . . . . . . . . . . . . . . . . . . 169
9.7 Problem view with an incorrect WSML variant . . . . . . . . . . . . . . . 170
9.8 Reasoner view with resources in the workspace . . . . . . . . . . . . . . . 172



X List of Figures

9.9 Discovery view showing matching descriptions . . . . . . . . . . . . . . . 173
9.10 SEE perspective showing connection to a WSMX server . . . . . . . 174



List of Tables

4.1 Logical expression features in WSML variants . . . . . . . . . . . . . . . . 46
4.2 Translating conceptual to logical syntax . . . . . . . . . . . . . . . . . . . . . 47

5.1 Mapping between abstract and surface syntax . . . . . . . . . . . . . . . . 68
5.2 Use of RDFS/OWL in WSML variants . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Set-theoretic criteria, intentions, and matches . . . . . . . . . . . . . . . . 104
6.2 Formal criteria for checking degrees of matching . . . . . . . . . . . . . . 107

7.1 Definition of associated update sets . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.1 Examples for the axiomatization of ontology elements . . . . . . . . . 143
8.2 Normalization of WSML logical expressions . . . . . . . . . . . . . . . . . . 144
8.3 Simplification of expressions using Llyod-Topor transformations.145
8.4 Translating WSML logical expressions to Datalog rules . . . . . . . . 146
8.5 Replacing constraints by rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



List of Listings

2.1 Example XML document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 OWL example using abstract syntax . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 SOAP envelope example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 An example WSML ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 An example Web service description . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 An example capability: adding items to a shopping cart . . . . . . . 49
4.4 An example interface declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Example nonfunctional properties . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Example Web service written in WSML/XML . . . . . . . . . . . . . . . 57
4.7 Example Web service description written in WSML/RDF . . . . . 59
6.1 Goal for retrieving price information . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Web service offering price information and buying functionality 103
6.3 Excerpt from the commerce domain ontology . . . . . . . . . . . . . . . . 108
6.4 Possible state in an abstract state space . . . . . . . . . . . . . . . . . . . . . 109
6.5 Statements describing a particuar information space . . . . . . . . . . 110
6.6 State transition of a bank transfer Web service . . . . . . . . . . . . . . . 111
6.7 A non-realizable credit card payment service . . . . . . . . . . . . . . . . . 112
6.8 A realizable credit card payment service . . . . . . . . . . . . . . . . . . . . . 113
6.9 Excerpt of the mediaShoppingCapability . . . . . . . . . . . . . . . . . . . . . . . 114
7.1 The “Buy” choreography of the media shopping service . . . . . . . 120
7.2 Excerpt from the state signature of the “Buy” choreography . . . 121
7.3 Excerpt from the transition rules of the “Buy” choreography . . . 122
7.4 Example of a choreography state . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.5 A simple transition rule for searching media products . . . . . . . . . 125
7.6 Examples of facts available to the choreography . . . . . . . . . . . . . . 126
8.1 Fragment of a WSML ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



1

Introduction

The Semantic Web [18, 128] aims to make the vast amount of information on
the Web accessible to machines through the annotation of Web content using
machine-understandable formats such as RDF,1 and enable comprehension
and integration of this information through the use of ontologies [55], which
may be specified using the Web Ontology Language OWL [103]. However,
these annotations refer only to static knowledge, and ontologies are – gener-
ally speaking – static descriptions of background knowledge in a particular
domain. Web services [4] are concerned with providing functionality over the
Web, and are thus more than chunks of static information; an example of
such functionality is the sale of books over the Web, e.g., Amazon.2 Main-
stream Web service technologies such as SOAP3 and WSDL4 provide means
for the structured XML-based annotation of, and interaction with, Web ser-
vices. However, the description of the functionality of services using these tech-
nologies is limited to natural language text and a description of the structure
of input and output messages. These limitations make it hard – especially for a
machine – to understand the functionality of a service, let alone automatically
discover, combine, and execute Web services. Consequently, the location, se-
lection, combination, and usage of Web services requires considerable human
effort [57, Section 4.5].

There is a conjecture that the combination of Semantic Web and Web ser-
vice technologies, called Semantic Web services, has the potential to overcome
these limitations [104]. To facilitate combining these technologies, several ap-
proaches to Semantic Web service description have arisen. They range from
bottom-up approaches that extend existing technologies, such as WSDL-S
[2] and SAWSDL [54], to top-down approaches that introduce new languages
for the semantic description of Web services and subsequently “ground” such

1 http://www.w3.org/RDF; see also Section 2.2.1
2 http://www.amazon.com
3 http://www.w3.org/TR/soap/
4 http://www.w3.org/TR/wsdl



2 1 Introduction

descriptions in existing technologies. The two most prominent top-down ap-
proaches are OWL-S (OWL-Services) [102, 8] and the Web Service Modeling
Ontology (WSMO) [121, 57]. The former is tied in with the DL (Description
Logic) sub-language (species) of the Web Ontology Language OWL [46, 77],
and requires the use of OWL DL for the description of services.5 WSMO
provides a language-independent conceptual model for the description of ser-
vices; it does not require using specific language, but requires languages that
implement WSMO to follow the structure of the conceptual model.

The Web Service Modeling Language WSML [68, 29] (pronounced wiss-
mill), which is the topic of this book, is a language implementing the concep-
tual model of WSMO (pronounced wiss-mow). In particular, WSML provides:

• a concrete language for writing WSMO ontologies, goals, Web services,
and mediators;

• three concrete syntaxes for editing, representing, and exchanging WSML
descriptions: a (1) BNF-style surface syntax for use by authors of de-
scriptions and examples and (2) XML and (3) RDF representations for
automated exchange of descriptions and integration with other data on
the (semantic) Web;

• a choice in knowledge representation paradigm: the user can choose either
Description Logics [11] or Logic Programming [96, 13, 61] as the underlying
paradigm for ontology and Web service description;

• three sub-languages for describing the key aspects of services:
1. ontologies, which provide the terminology and background knowledge

for service description,
2. functional service descriptions, which comprise the requested function-

ality of a goal or the provided functionality of a Web service, and are
primarily used for automating Web service discovery, and

3. behavioral service descriptions, which are descriptions of service inter-
faces in terms of their possible interactions, and are primarily used for
automating Web service execution; and

• the possibility to use RDF Schema [28] and OWL DL [46] ontologies for
Web service description, thereby enabling the reuse of existing ontologies
on the Semantic Web in Web service descriptions.

In this book we describe the language and show how the above-mentioned
aspects of WSML are realized. Although this book does contain a brief intro-
duction to WSMO, we refer the reader to a book written by Fensel et al. [57]
for a more elaborate description of the conceptual model itself, as well as
possible uses thereof.

Besides technical aspects of the language, we describe two software ap-
plications that work with WSML. The first, WSML2Reasoner, exploits the
fact that WSML is based on the Description Logic and Logic Programming
knowledge representation paradigms. It takes as input WSML descriptions

5 For a more elaborate comparison of OWL-S and WSMO see [91].



1.1 Running Example 3

and translates them to formats internal to Description Logic and Logic Pro-
gramming reasoners, thereby providing reasoning support; see Chapter 8. The
second tool, the Web Service Modeling Toolkit (WSMT), is an Integrated
Development Environment (IDE) for Semantic Web services and provides
comprehensive support for the full life cycle – creation, management, and
usage – of WSML descriptions; see Chapter 9. For more details around the
implementation of Semantic Web services in the context of WSMO and WSML
we refer the reader to a book edited by Fensel, Kerrigan, and Zaremba [56].

In Section 1.1 we introduce the running example used for illustration of
the concepts throughout the book. We describe the outline of the book in
Section 1.2.

1.1 Running Example

To illustrate the use of WSML we use a running example throughout the
book. The example is a scenario concerned with a media shop – that is, a
shop that sells media products such as books, CDs, and DVDs. We proceed
with a description of the scenario.

The company Media Sales International (MSI), a reseller of media products
such as books, CDs, and DVDs, wants to sell its products online, using Web
service technology. The company has warehouses where the media products
are stored, and from where the products are dispatched to the customers.
However, the products are shipped by other companies, e.g., the Postal Service
or an express shipping company.

MSI currently uses the express shipping company FHS for the delivery
of all goods. However, FHS is not always the cheapest or fastest delivery
service. Depending on the destination, there are other express shipping com-
panies that are cheaper or faster. Using these other shipping services would
require adaptation of the business processes and IT infrastructure at MSI, for
each additional shipping service which is being used. MSI hopes that with
the migration to Web service technology, it will be easier to choose different
shipping services, always selecting the cheapest or fastest service, depending
on the customer’s preference.

Finally, MSI outsources payments of goods to the company CheapC-
CProcessing, which does validation of credit card information, and takes care
of payment processing. MSI has had only positive experiences with CheapC-
CProcessing; the company is cheap, and payments are processed in a timely
manner. Thus, MSI wants to continue exclusively using the services of Cheap-
CCProcessing for credit card payments. However, MSI would also like to give
its customers the possibility of directly paying using their bank accounts; MSI
does not have any experiences with companies providing such services.

Figure 1.1 illustrates the services MSI wants to offer to its customers using
a Web service interface and the services it requires from other organizations.



4 1 Introduction

MSI

search

select

pay

dispatch

ship

Payment Processing

verify data

process payment

Shipping

calculate cost

pick up

deliver

Fig. 1.1. Scenario of the running example

MSI wants to offer the following functionality to its customers, as illus-
trated in Figure 1.1. The figure also illustrates the services MSI requires from
other organizations.

• MSI allows the customer to search the product catalog.
• When the customer has selected a product from the catalog, he/she can

add the item to the shopping basket, view and update the basket, and,
after providing shipping information, view the shipping cost. The shipping
cost is provided by the selected shipping company.

• After providing payment details and billing information, the customer can
pay for the products and shipping. A payment processing service validates
the payment details and processes the payment.

• After payment has been received, the product(s) is/are dispatched, which
means that the shipping company does the pick up of the goods.

• Finally, the goods are shipped, i.e., they are delivered at the address pro-
vided by the customer.

The challenges addressed in this book are concerned with both the de-
scription and usage of services such as those in Figure 1.1. Specific challenges
are the description of the functionality of the services as a whole (i.e., MSI,
Payment Processing, and Shipping; see Chapter 6), the description of their



1.2 Outline of the Book 5

individual components (e.g., select, pick up) and the interaction between these
individual components, i.e., the behavior of the services (see Chapter 7), as
well as the description of the terminology, in the form of ontologies, used in
Web service descriptions (see Chapter 5).

1.2 Outline of the Book

The main content of the book is structured into three parts:

Part I Basics

This part contains a description of the background technologies and an
overview of the WSML language. A brief overview of the Web, Semantic Web,
and Web service technologies, as well as challenges facing these technologies,
is presented in Chapter 2. Chapter 3 contains an overview of the Web Ser-
vice Modeling Ontology and describes its components on an intuitive level.
Chapter 4 describes some of the underlying principles of WSML, introduces
the WSML language through its surface syntax, gives an overview of the ex-
change syntaxes, and describes how RDF and OWL ontologies can be used in
WSML.

Part II The WSML Description Components

This part describes the main components of WSML descriptions, namely on-
tologies and functional and behavioral Web service descriptions, in detail.
Chapter 5 addresses WSML ontologies, and their combination with RDFS
and OWL DL ontologies. The chapter gives an overview of the semantics of
all WSML variants, which are based on the knowledge representation para-
digms of Description Logics and Logic Programming. Functional description
of services is addressed in Chapter 6, in which two means for describing the
functionality of WSML services – set-theoretic relations and abstract state
spaces – are discussed in detail. Chapter 7 presents a language for the behav-
ioral description of services – the WSML choreography language.

Part III Enabling Technologies for WSML

In this final part two applications for processing and managing WSML de-
scriptions are described. Chapter 8 describes a generic software framework
for reasoning with WSML descriptions, and the use of this framework with
existing Description Logic and Logic Programming reasoners. The Web Ser-
vice Modeling Toolkit (WSMT), a comprehensive management environment
for WSML descriptions, is described in Chapter 9. The chapter describes how
to edit, browse, validate, and test WSML ontologies, Web services, and goals.

Finally, conclusions are presented in Chapter 10.



Part I

Basics



2

Semantic Web Services

In this chapter we briefly review the current Web, Web service, and Semantic
Web technologies, in the Sections 2.1, 2.3, and 2.2, respectively. We then
review the typical usage patterns for Web services, and show the shortcomings
of current technologies with respect to these usage patterns, motivating the
need for adding semantics to Web services, in the Sections 2.4 and 2.5.

For a more detailed description of Web technologies we refer the reader
to [57, Chapter 2]. For a detailed description of the concepts underlying Web
services, as well as Web service technologies, we refer the reader to [4].

For more comprehensive surveys on Semantic Web technologies we refer
to [57, Chapter 3], [3], and [9].

2.1 Web Technologies

The World Wide Web (WWW, or simply Web) is a collection of interlinked
documents, which might be written using the (X)HTML [67] format, acces-
sible over a standardized protocol (e.g., HTTP [64]), and each document is
identified by a Uniform Resource Identifier (URI) [49, 17]. The Web character
of the World Wide Web comes from the interlinked nature of the documents;
HTML documents contain links to other documents.

HTTP (HyperText Transfer Protocol) is the primary protocol for the
transfer of documents on the Web, and HTML (HyperText Markup Lan-
guage) is the format for representing documents and their inter-linkage on
the Web. However, one may also use other protocols (than HTTP) for the
exchange of information over the Web. Examples of such protocols are FTP
(File Transfer Protocol), SMTP (Simple Message Transfer Protocol), and, in-
deed, SOAP (see the next section). Although HTML has been, and still is, the
dominant format for the representation of Web documents, recently more and
more formats for the representation of data on the Web have arisen. Exam-
ples are PNG (for images), CSS (style sheets), and XML (described in more
detail below), as well as numerous XML-based formats such as XHTML (the



10 2 Semantic Web Services

<books xmlns=”http://example.org/msi#”>
<book isbn=”0684803356”>

< title>For Whom the Bell Tolls</title>
<author>Ernest Hemingway</author>

</book>
<book isbn=”0553211757”>

< title>Crime and Punishment</title>
<author>Fyodor Dostoevsky</author>

</book>

.

.

.
</books>

Listing 2.1. Example XML document

successor of HTML), SMIL (Synchronized Multimedia Integration Language),
and RDF/XML (see Section 2.2).

Of all the Web standards, URI is seen as most central to the Web. In fact,
the World Wide Web Consortium (W3C) recommendation Architecture of the
World Wide Web [80] defines the Web as “an information space in which the
items of interest, referred to as resources, are identified by global identifiers
called Uniform Resource Identifiers (URI).”

URI

Uniform Resource Identifiers (URIs) are globally unique identifiers of re-
sources. These resources may or may not correspond to documents on the
Web. For example, the URI http://www.w3.org corresponds to the home-
page of the W3C, which is an HTML document on the Web, whereas
http://www.w3.org/1999/02/22-rdf-syntax-ns#type is the identifier of
a particular RDF constructs (see also Section 2.2). Note that if you en-
ter the URI http://www.w3.org/1999/02/22-rdf-syntax-ns#type in your
browser, you will retrieve a document which describes RDF using RDF/XML.
However, http://www.w3.org/1999/02/22-rdf-syntax-ns#type does not
refer to these documents, or any part of this document. Rather, the document
at the location http://www.w3.org/1999/02/22-rdf-syntax-ns gives addi-
tional information about http://www.w3.org/1999/02/22-rdf-syntax-ns#
type.

XML

The eXtensible Markup Language (XML) [27] is a language for the represen-
tation of (semi-)structured data. The data in an XML document is organized
in a tree structure. The basic building block of XML is the element, which
has a number of associated attributes. Each element may contain text, and
the elements may be nested inside other elements, thereby obtaining a tree
data structure; each XML document must contain exactly one root element.
Listing 2.1 contains an example XML document.



2.2 Semantic Web Technologies 11

In the example, the root element is books. This element consists of a num-
ber of a book elements. Each book has an attribute isbn, and has two elements:
title and author. That xmlns attribute of the books element is a standard “built-
in” attribute of the XML, and stands for “XML Namespace”:
The namespace [26], which is a URI, plays a key role in XML. In fact, every
(expanded) name in XML is a pair < namespace, localname >. For example,
the expanded name of the root element in Listing 2.1 is <http://example.org/
msi#, books>. It is possible to use different namespaces in the same document;
in this way, one can combine data whose formats are defined in different
locations in a single XML file. A typical usage for namespaces is referring
to a description of the document structure, possibly in the form of an XML
schema [53], which is an XML-based format for defining the structure of XML
documents.

XML has widely been adopted as a format for exchanging structured data
over the Web. In fact, it forms the basis for the formats typically used in the
context of Web services (see the next section) as well as the Semantic Web
(see Section 2.2). Several languages have been developed for XML such as
schema languages (XML Schema [53]), query languages (XPath1, XQuery2),
a linking language (XLink3), and a transformation language (XSLT [81]).
Furthermore, there are numerous formats which are based on XML, including
the Web service and Semantic Web formats described in the following section.

2.2 Semantic Web Technologies

A major drawback of the use of XML as a data model is that XML documents
do not convey the meaning of the data contained in the document. Schema
languages such as XML schema allow constraining the format, but not the
meaning of XML data. Exchange of XML documents over the Web is only
possible if the parties participating in the exchange agree beforehand on the
exact syntactical format (possibly expressed using XML Schema) of the data
and the meaning of the terms and structures into XML documents. The Se-
mantic Web [18] allows the representation and exchange of information in a
meaningful way, facilitating automated processing of descriptions on the Web.

Annotations on the Semantic Web express links between information re-
sources on the Web and connect information resources to formal terminologies
– these connective structures are called ontologies [55], which form the back-
bone of the Semantic Web. They allow machine understanding of information
through the links between the information resources and the terms in the on-
tologies. Furthermore, ontologies facilitate interoperation between information
resources through links to the same ontology or links between ontologies.

1 http://www.w3.org/TR/xpath20
2 http://www.w3.org/TR/xquery/
3 http://www.w3.org/TR/xlink11/



12 2 Semantic Web Services

The language for creating links between resources and annotating resources
with connections to ontologies on the Semantic Web is RDF. There are two Se-
mantic Web ontology languages recommended by W3C, namely RDF schema
and the Web Ontology Language OWL. The latter is an extension of the
former.

2.2.1 The Resource Description Framework

The Resource Description Framework (RDF) [90] is the first language devel-
oped especially for the Semantic Web. RDF was developed as a language for
adding machine-readable metadata to existing data on the Web. RDF uses
XML for its serialization [14]. RDF Schema [28] extends RDF with some ba-
sic (frame-based) ontological modeling primitives. There are primitives such
as classes, properties, and instances. Also, the instance-of, subclass-of, and
subproperty-of relationships have been introduced, allowing structured class
and property hierarchies.

RDF has the subject–predicate–object triple, commonly written as s p o,
as its basic data model. An object of a triple can, in turn, function as the
subject of another triple, yielding a directed labeled graph, where resources
(subjects and objects) correspond to nodes, and predicates correspond to
edges. Furthermore, RDF allows a form of reification (a statement about a
statement), which means that any RDF statement can be used as a subject in
a triple. Finally, RDF has a notion of blank node (bNode), which is essentially
a node that does not have a name.

Fig. 2.1. Example RDF graph

Figure 2.1 illustrates the main concepts of RDF. The node labeled #john
depicts a particular resource. This resource is linked to another resource with
the property hasName – this resource does not have a name and is thus de-
picted using a blank node. In turn, the unnamed resource is linked to two
literals, which are essentially strings; literals are depicted by rectangles in the
figure. Besides illustrating some of the concepts of RDF, the figure shows how
structured objects – in this case a name consisting of a first name and a last
name – can be written in RDF.

In some sense, RDF is built on top of XML. RDF does not extend XML,
but XML can be used for writing down and exchanging RDF statements.
RDF/XML [14], as the XML-based serialization of RDF is called, can be
seen as an XML language. In fact, RDF/XML is the standard syntax for



2.2 Semantic Web Technologies 13

RDF. There are other syntaxes for RDF that are more suitable for human
consumption – an example is Turtle [15] – but these are not recommended for
exchanging RDF.

RDF Schema

RDF Schema (RDFS) is a lightweight ontology language for defining vocabu-
laries that can be used with RDF. Unlike XML Schema, which prescribes the
order and combinations of tags (the structure) in an XML document, RDF
Schema only provides information about the interpretation of the statements
given in an RDF data model. RDF Schema does not say anything about the
syntactical appearance of the RDF description. RDFS can in fact be seen as
an extension of RDF with a vocabulary for defining classes, class hierarchies,
properties (binary relations), property hierarchies, and property restrictions.
RDFS classes and properties can be instantiated in RDF. For a more detailed
comparison of XML Schema and RDF Schema we refer the reader to [89].
Figure 2.2 shows an RDFS ontology of persons.

Fig. 2.2. RDFS ontology of persons

RDF(S) (referring to the combination of RDF and RDF Schema) is not
very expressive compared with many other ontology languages, as it allows
only the representation of concepts, concept taxonomies, binary relations, and
simple domain and range restrictions on properties. The expressive limitations
of RDF(S) were a major motivation for developing more expressive languages
for the Semantic Web.

2.2.2 The Web Ontology Language OWL

The Web Ontology Language OWL [46] is an expressive ontology language
that extends RDFS. OWL itself consists of three species of increasing expres-
siveness: Lite, DL, and Full. We are here mostly considered with OWL DL,
which is based on the Description Logics knowledge representation paradigm
[11].

Where statements in RDF(S) are triples, statements in OWL DL are ei-
ther axioms or assertions. An axiom is either a class definition, a class axiom,



14 2 Semantic Web Services

Class(Person partial
restriction (hasChild allValuesFrom(Person)))

Class(Parent complete
Person
restriction (hasChild someValuesFrom(Person)))

ObjectProperty(hasChild)

Individual (John type(Person)
value(hasChild Mary))

Listing 2.2. OWL example using abstract syntax

or a property axiom. Class definitions can be used to define subclass rela-
tionships, as well as certain property restrictions which hold for a particular
class. With class and property axioms one can express more complex relation-
ships between classes and between properties such as boolean combinations
of class descriptions and transitive, inverse, and symmetric properties. Indi-
vidual assertions can be used to express class membership, property values,
and (in)equality of individuals.

OWL DL is defined in terms of an abstract syntax [115]. However, the
normative syntax for the exchange of OWL ontologies is RDF/XML. The RDF
representation of an OWL DL ontology can be obtained through a mapping
from the abstract syntax.

Listing 2.2 illustrates OWL DL using an ontology written in abstract syn-
tax form. We define a class Person with a property hasChild, of type Person,
and a class Parent, which is defined as a person who has a child. Finally, we
define an individual John, who has a child Mary. OWL DL allows us to infer
that John is a Parent.

2.3 Web Service Technologies

The Web services paradigm is often depicted as the next step in software
engineering and software architecture [4]. This facilitates developing distrib-
uted applications through combinations of services that are located in various
places on the Web, as well as remotely accessing business services. Software
architectures that are based on the Web services paradigms are called Service-
Oriented Architectures (SOA).

In this section we first briefly review the principles of service-oriented
architectures, after which we describe the three most prominent Web service
technologies.

2.3.1 Principles of Service-Oriented Architectures

Web services are self-contained, atomic units of computation. In fact, a Web
service can be seen as a function, which has an input (e.g., product and credit



2.3 Web Service Technologies 15

card information) and an output (e.g., purchase confirmation), but it might
also have some side effects (e.g., credit card is charged with the price of the
product). The W3C Web service Activity uses a technology-oriented defin-
ition of a Web service: “a software application identified by a URI, whose
interfaces and bindings are capable of being defined, described, and discov-
ered as XML artifacts. A Web service supports direct interactions with other
software agents using XML-based messages exchanged via Internet-based pro-
tocols.” [10]

From the definition we see that the use of standards, and especially XML
and Internet-based protocols, is an important aspect of Web services. As we
will see below when discussing the Web service technologies, the Web stan-
dards URI, HTTP, and XML play an important role.

Services do not maintain state across invocations; therefore, any two in-
vocations are, to some extent, independent. However, if a service changes the
state of the world two invocations might not be independent. For example, if
the invocation of a media selling service results in the removal of the last copy
of a book from the warehouse, rendering the item out of stock, a following
invocation of the service requesting the sale of the same book will fail or result
in a longer delivery time.

2.3.2 The Web service Technology Stack

SOAP

SOAP [69] is a protocol for the exchange of messages. It is used for both
messages sent to (input) and messages received from (output) Web services.

SOAP defines both a format for messages, based on XML, and a processing
model, which defines how a receiver should process a SOAP message. Further-
more, it defines a framework for protocol bindings, and (in [70]) a binding for
the HTTP protocol, which defines how SOAP messages can be transferred
using HTTP.

A SOAP message consists of a SOAP envelope, which in turn contains
an optional header and a body. Listing 2.3 contains an example of a SOAP
envelope.

The header of a soap message typically contains information regarding
the processing of the message. In the example, it says that the message is
concerned with a transaction with the number 5. The head also contains
security-related information. Credit card information would typically not be
sent as plain XML, like in example in Listing 2.3. Instead, the information
would be encrypted, e.g., using WS-Security [111].

The body contains the actual information that is to be transferred to
the application (i.e., the Web service input or output). In the example,
chargeBasket is the name of the procedure (service) to be invoked. There
are two inputs, namely the (shopping) basket, which has a specific code
(IKGH6343GTW) and credit card information. SOAP provides a data model



16 2 Semantic Web Services

<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap−envelope” >
<env:Header>

<t: transaction
xmlns:t=”http://example.org/MSI/transaction”
env:mustUnderstand=”true”>5</t:transaction>

</env:Header>
<env:Body>
<m:chargeBasket

env:encodingStyle=”http://www.w3.org/2003/05/soap−encoding”
xmlns:m=”http://example.org/MSI”>

<m:basket xmlns:m=”http://example.org/MSI”>
<m:code>IKGH6343GTW</m:code>

</m:basket>
<o:creditCard xmlns:o=”http://example.org/MSI/financial”>

...
<o:number>123456789000000</o:number>
<o:expiration>2008−04</o:expiration>

</o:creditCard>
</m:chargeBasket>

</env:Body>
</env:Envelope>)

Listing 2.3. SOAP envelope example

for the representation of application-defined data structures, such as the shop-
ping basket and credit card in the example; this data model is close to XML
and can be represented in XML. The value of the encodingStyle attribute
(http://www.w3.org/2003/05/soap-encoding) in the example conveys the in-
formation that the content is an XML encoding of this data model.

WSDL

The Web Services Description Language WSDL [40] is an XML language for
describing Web services. It can be seen as an interface definition language,
since it defines the interface of the service in terms of its inputs and outputs.
However, a WSDL description is more intricate than most interface definition
languages, since it also needs to describe how and where to access the service.

A WSDL description consists of an abstract and a concrete part. The
abstract part of a WSDL description consists of

• types, which are the kinds of messages the surface will send or receive and
• interfaces, which describe the abstract functionality provided by the

Web service.

The message types are defined using XML schema [132]. An interface de-
fines the abstract interface of a Web service as a set of operations, where each
operation represents an interaction between the client and the service. An
operation typically has a name, a message exchange pattern, and inputs and
outputs, which are specified in terms of types.

The concrete part consists of

• bindings, which describe how the service can be accessed and
• services, which describe where the service can be accessed.



2.4 Web Service Usage Tasks 17

A binding specifies the concrete message format and transmission protocol
for an interface, and thus for every operation in the interface. WSDL provides
specific support for bindings using SOAP and HTTP.

Finally, a service specifies a concrete service, which consists of a reference
to an interface and the endpoints where the service can be accessed. Each
endpoint must include a reference to a binding to indicate which protocol and
which transmission format should be used when accessing the service, as well
as the actual address of the service, which is typically (but not necessarily) a
URI.

SAWSDL

SAWSDL [54] (Semantic Annotations for WSDL) extends WSDL with a num-
ber of attributes that can be used for the semantic annotation of services, e.g.,
through references to ontologies. Specifically, an interface, an operation, an
XML schema type, or an XML schema element may be annotated with a
modelReference, which is a list of URIs. These URIs are pointers to con-
cepts in some semantic model (e.g., an ontology). Furthermore, XML schema
types and elements may be annotated with schema mappings, which are ref-
erences to mappings between an XML schema type or element and a concept
in the semantic model; the mappings define how instances of the schema are
translated to instances of the concept in the semantic model, and vice versa.

SAWSDL provides a means for referring to semantic annotations, but does
not impose any restrictions on the shape of these annotations. For example,
such annotations may be RDFS or OWL ontology classes or (parts of) WSML
descriptions.

2.4 Web Service Usage Tasks

As we have seen in the previous section, a (WSDL) Web service description
tells the client how to invoke the service, that is, the location of the service,
the protocol to be used for invocation, and the format of the messages to be
sent to the service.

Besides the obvious use for invoking Web services (invoke), there are a
number of other uses for Web service descriptions. Specifically, before invoking
a Web service,

1. it is necessary to find a service that provides the desired functionality
(discover),

2. select the best service, according to user preferences, among those provid-
ing the required functionality and negotiate a Service Level Agreement
(SLA) with the provider (select/negotiate), and

3. if multiple services need to be invoked, the order of invocation needs to
be determined (composition).



18 2 Semantic Web Services

Likewise, the service provider needs to advertise the description of the service
so that potential users can find it (publish), negotiate SLAs with potential cus-
tomers, and execute the service when invoked. This usage process is illustrated
in Figure 2.3.

Requester process

discover

select

compose

invoke

Provider process

publish

negotiate

execute

Fig. 2.3. Basic Web service usage process

We now describe each of the steps in the usage process in more detail.

2.4.1 Publication

The service provider needs to publish a description of the service such that it
may be found by potential requesters. The description would be published at
a Web service repository (e.g., UDDI [16]) that can be searched. It is crucial
that the description of the service is written in such a form that potential
requesters understand the functionality provided by the service and that po-
tential customers that require this functionality will actually find it.

2.4.2 Discovery

Clients in search of a service that provides some desired functionality will
query service repositories to find Web services that can provide it. In order to
be able to find services, the query comprising the desired functionality has to
be formulated in such a way as to allow matching the request with published
service descriptions. In addition, if discovery is to be automated, both the
service description and the user query need to be formulated using a language
that can be processed by a machine (computer).



2.4 Web Service Usage Tasks 19

So, the functionality of the service and the client request both need to be
formulated using a formal language, in order to allow automation of match-
ing, and they need to use the same or related terminologies, to ensure that
descriptions that are concerned with essentially the same thing can actually
be matched.

2.4.3 Selection and Negotiation

The discovery step in the requester process may return a number of Web
service descriptions, i.e., there may be several Web services providing the
desired functionality. It is then necessary to select one particular Web service
from the list and negotiate a Service Level Agreement (SLA) with the provider.

Selection of the service is done based upon matching user preferences with
nonfunctional descriptions, e.g., quality of service (QoS), pricing, existing
SLAs, etc. For example, a requester might look for a service that provides
credit card payment processing services. The discovery step may return two
Web services: the services A and B both provide payment processing ser-
vices, but their quality of service differs: A guarantees processing each pay-
ment within 1 minute and charges e1, 00 per payment, whereas B guarantees
processing within 1 day, but charges only e0, 10 per payment. Depending on
whether the requester prefers a low price or quick processing, A or B will be
selected.

In order to automate such matching and ranking of services with respect
to user preferences the client needs to describe its preferences and the provider
needs to include non-functional (QoS) descriptions of the service in the adver-
tised service description. Furthermore, these descriptions need to use common
vocabularies and need to be expressed using a formal language in order to en-
able automated selection and ranking.

Negotiating a Service Level Agreement typically requires complex interac-
tion between the requester and the provider. Selection can be seen as a trivial
form of negotiation.

2.4.4 Composition

The service may only provide part of the functionality desired by the user.
For example, booking a trip may require both flight and hotel reservation,
which are provided by 2 different services. In this case, the services need to
be combined, or composed, to achieve all of the goals of the user.

Concretely, the task of Web service composition is: given a number of
services that potentially provide part of the desired functionality, combine the
services in such a way that they together provide the desired functionality, and
specify how they should interact. In the example of flight and hotel reservation,
the flight reservation service would have to be invoked first, because this will
determine the actual travel days and times. Only after the invocation of the



20 2 Semantic Web Services

flight reservation service has been completed and the travel itinerary has been
finalized, can the hotel reservation service be invoked.

During composition, new services need to be discovered and/or selected.
This might require additional discovery and/or selection and negotiation ac-
tivities during the composition process.

There are a number of challenges in Web service composition. First of
all, the language that is used to represent the composition of services (e.g.,
BPEL4WS [6]) must be able to represent dependencies between the services,
and it must be possible to verify that the composition of services indeed
provides the desired functionality and that at any point in the process the
conditions for invoking the next service (e.g., input data is available) are
satisfied.

We distinguished two levels of Web service composition:

Functional composition: based on the functionality advertised by the Web
services, they are composed in such a way that their combination pro-
vides the desired functionality. A particular challenge in this scenario is
to determine the order of invocation of services, to ensure that the pre-
conditions of the next service to be invoked are met.

Interface composition: at each stage in the process it must be possible to
invoke the next service, so the information required for the input of service
must be available at that stage; this information will typically depend on
the outputs of other Web services in the composition.

2.4.5 Invocation and Execution

After the services has been discovered, selected, and composed, they need to
be invoked. With service invocation we mean an interaction between the client
and the service that involves messages being exchanged between the two. Web
service description standards that are currently in place (i.e., WSDL) allow
describing the location of services, as well as the protocol to be used for
sending messages (e.g., HTTP) and the format of the messages (e.g., SOAP).
Current standards, however, do not allow describing the content of messages.
Therefore, it is not possible to automatically interpret such messages.

2.5 Challenges in Web Service description

We are concerned with a means of describing services that overcomes the
difficulties mentioned in the previous section. We can conclude that we need
three kinds of description for each individual service:

Functional description The tasks of publication, discovery, and composi-
tion all require a means for describing the functionality of a service. Fur-
thermore, automation of these tasks requires a mechanism for matching
functional descriptions.



2.5 Challenges in Web Service description 21

Behavioral and interface description The task of invocation requires a
description of messages to be sent to and received from a service. In gen-
eral, a complex service (e.g., media selling service) requires a complex
interaction between the requester and provider of the service, i.e., sev-
eral messages are sent back and forth. This requires a description of the
content of individual messages, as well as the interaction itself.

Nonfunctional description The task of selection requires nonfunctional
properties, including Quality of Service (QoS) parameters such as price
and availability, as well as such things as trust and security-related as-
pects; see [113].

Finally, in order to be able to find potential matches, a common termi-
nology is required. Semantic Web technologies, as described in Section 2.2,
provide languages for describing such terminologies (i.e., ontologies).

The Web Service Modeling Language WSML accounts for all these kinds of
descriptions. Chapter 4 introduces WSML and illustrates how these kinds of
descriptions are realized in WSML. Chapter 5 describes ontologies in WSML
in more detail. Chapters 6 and 7 address functional and behavioral description
using WSML. However, before introducing WSML, we describe the concep-
tual framework underlying the language, namely the Web Service Modeling
Ontology WSMO, in the following chapter.



3

The Web Service Modeling Ontology

In the previous chapter we have identified several aspects of services that
need to be described in order to effectively find and use these services. This
includes the functional and nonfunctional description of the service, as well
as a description of the behavior and the interface. We have also identified the
need for common terminologies and suggested the use of ontologies for their
description; using a common vocabulary across descriptions is a prerequisite
to be able to match descriptions of Web services and user requirements.

The Web Service Modeling Ontology WSMO [57, 121] provides a concep-
tual model for the description of Web services. WSMO distinguishes between
user goals, which are descriptions of the desires of the requester, and Web
service descriptions, which are descriptions of the functionality and interface
of the service offered by the provider. Thereby, WSMO acknowledges the sep-
aration between the requester and provider roles.

Another important principle of WSMO is the loose coupling of the descrip-
tions of goals and Web services, allowing them to be described independently.
Mediators (first identified in [138]) are used for overcoming possible discrep-
ancies in the terminology and styles employed in the descriptions.

WSMO identifies four main top-level elements:

• Ontologies provide formal and explicit specifications of the vocabulary
used by the other modeling elements in WSMO. The use of shared ontolo-
gies specified in formal languages increases interoperability and allows for
automated processing of the descriptions. In the previous chapter we have
mentioned two languages for describing ontologies, namely RDF Schema
and OWL. As we shall see in the next chapter, WSML not only enables
using RDF Schema and OWL ontologies, but also provides an ontology
language of its own (Section 4.4.3; see also Chapter 5).

• A Web service is a piece of functionality accessible over the Web. A WSMO
Web service is made up of three parts, namely
– the capability, which describes the functionality offered by the service,



24 3 The Web Service Modeling Ontology

– the interface, which describes (a) how to interact with the service,
through its choreography and (b) how the service makes use of other
services in order to provide its functionality, through its orchestration,
and

– the non functional information, comprising such things as costs of
service invocation and Quality of Service (QoS) related parameters
[113, 134].

• The way in which service requesters use Web services may be very different
from what was envisaged by the provider of the service. Thus it is impor-
tant that requirements of the requester are given the same importance as
the description of services. Thus WSMO provides goals as a mechanism for
describing the requirements a given service requester has when searching
for services that meet these requirements. As is the case for the description
of Web services, these requirements are broken down into
– the requested capability, i.e., the functionality the requester expects

the service to provide,
– an optional requested interface, i.e., what the interaction pattern of the

service should look like for interfacing with it and which services this
service should make use of in order to achieve its functionality, and

– non-functional information comprising and user preferences related to
QoS parameters.

• The open and distributed nature of the Web requires resources to be de-
coupled. In other words, WSMO descriptions are created in (relative) iso-
lation from one another and thus the potential for heterogeneity problems
between resources is high. Such heterogeneity issues can exist between the
formats of the data exchanged between service requesters and providers,
the process is used for invoking them and the protocols used in communica-
tion. WSMO mediators are responsible for overcoming these heterogeneity
problems; WSMO emphasizes the centrality of mediation by making me-
diators a first class component of the WSMO model. An example of a
WSMO mediator for resolving data heterogeneity is a mediator that per-
forms transformation of instant information from one ontology to another
through the use of ontology mappings [106].

We focus here on the structure of Web service and goal descriptions and
how they relate to each other. When clear from the context, we refer to
WSMO Web service and goal descriptions simply as a (Web) services and
goals, respectively. Recall that Web services define the information needed for
a machine to interpret the usability of a Web service to fulfill a requester’s
requirements, which are encoded as a goal. Figure 3.1 presents the elements
of a Web service description, namely non-functional properties, a capability,
a choreography and an orchestration. The term interface is used to describe
the combination of the choreography and orchestration of a service. Note that
services may have zero or more interfaces; for reasons of understandability
only one interface is depicted in the figure.



3.1 Web Service and Goal Description 25

The structure of a goal is the same as that of a Web service and automating
a given task in the process of using Web services is essentially the interaction
of a given part of the goal description with a given part of one or more Web
service descriptions. Therefore below we describe the elements that make up
goals and Web services by describing how they interact with one another in
the process of automatically finding and using Web services.

Fig. 3.1. Elements of a Web service description

3.1 Web Service and Goal Description

In this section we describe the individual elements that make up a Web ser-
vice or goal description, namely the capability, the interfaces, and the non-
functional properties.

3.1.1 Functional Description Using Capabilities

To perform Web service discovery, in other words to automatically find ser-
vices that can fulfill the user’s requirements, the capability of a goal is com-
pared with the capabilities of known services. A capability is a description of
the functionality provided by a service (or requested by a requester) and is
described in terms of conditions on the state of the world that must exist for
execution of the service to be possible and conditions on the state of the world
that are guaranteed to hold after execution of the service. WSMO makes a
distinction between the state of the information space, i.e., the inputs and
outputs of the service, and the state of the world.



26 3 The Web Service Modeling Ontology

Based on these considerations a capability description comprises four main
elements. Preconditions describe conditions on the state of the information
space prior to execution. Therefore, preconditions specify requirements on
the inputs the service, e.g., typing. There may exist additional conditions
that must hold in the real world in order for the service to successfully ex-
ecute. These conditions, called Assumptions, are not necessarily checked by
the service before execution but are crucial to the successful execution of the
service (e.g., the balance on a credit card must be sufficient to conclude a
purchase). Postconditions describe conditions on the state of the information
space after execution has occurred, thus describing properties of the outputs
of the service, as well as the relationship between the inputs and the out-
puts. Many services will have real world effects, for example when purchasing
a book using a book selling service a physical book will be delivered to the
requester. Effects are conditions that are guaranteed to hold in the real world
after execution.

3.1.2 Behavioral Description of Services Using Interfaces

The process of discovering services by comparing the capabilities of goal and
Web service descriptions may yield a number of services that are capable
of achieving the user’s goals. However, compatibility of the capabilities of a
given goal and Web service does not mean that a given Web service is desir-
able for the requester. The interface of a Web service specifies how to interact
with the service in terms of a choreography, this choreography essentially pro-
vides information about the relationships between different operations on the
Web service, for example the login operation of a book selling service must
be invoked before the buyBook operation. A choreography can also be spec-
ified within the goal, essentially allowing the provider to specify the desired
interaction pattern. The choreographies within the goal and discovered Web
service descriptions can be compared in order to filter out those services whose
interaction pattern is incompatible with that of the requester.

The interface of a Web service description also contains an orchestration
description. An orchestration specifies which services this service relies upon
to provide its functionality, for example the description of a book selling ser-
vice may specify that a specific delivery service is relied upon for final delivery
of books. The goal may also contain such an orchestration description spec-
ifying the desired external services the discovered service should rely upon.
Discovered Web services that do not meet these requirements may be elim-
inated, e.g., services that do not use the requested delivery service are not
desired by the requester and thus can be ignored.

3.1.3 Describing Nonfunctional Properties of Services

After discovering those services whose functionally meets the requester’s re-
quirements and filtering out those that do not match in terms of their interac-
tion pattern or the services upon which they rely there may still be multiple



3.2 Basic Usage Patterns of WSMO 27

Requester process

describe goal

Goal

discover

matching

services

select

selected service /

SLA

compose

invocation plan

invoke

Provider process

describe service

Web service

publish

negotiate

SLA

execute

capability

non-funct. prop.

choreography

Fig. 3.2. Web service usage process in WSMO

services that can achieve the user’s goal. In this case the most desirable a
Web service must be selected from the list. To perform this selection the non-
functional properties of the discovered Web services are compared against the
requested non-functional properties within the goal. Non-functional proper-
ties, as their name suggests, are used to capture non-functional aspects of
a given Web service. These non-functional properties typically provide a de-
scription of the Quality of Service of the service, e.g., reliability, scalability,
and security. By comparing the requested non-functional properties of the goal
to those of the discovered services we can eliminate those services that do not
meet the minimum requirements laid out by the goal and rank the remaining
services to find the service that best fits the requester’s non-functional require-
ments. Having selected the right service for the requester, based on functional,
interface and non-functional parameters, automatic invocation of the selected
service is possible using the choreography description of the service.

3.2 Basic Usage Patterns of WSMO

Figure 3.2 shows the refinement of the Web service usage process (see Fig-
ure 2.3 on page 18) in the context of WSMO. Before publishing a service,
the provider needs to describe the service, which results in a Web service



28 3 The Web Service Modeling Ontology

description. Likewise, the requester needs to describe its goal before being
able to use it for discovery.

The capability sections of published Web service descriptions is used for
the discovery step; the capability section of the goal description is compared
with the capability sections of the published Web service descriptions. The
results of the discovery step is a list of services whose functionality matches
the goal.

The nonfunctional property sections of the descriptions of the matching
services are used in the selection and negotiation step. A selection is in fact a
simple negotiation: the provider offers an agreement in the form of the non-
functional properties in the Web service description, and the requester can
either choose to accept or reject it. The outcome of the selection and negotia-
tion step is (in the simple case) a single service plus a service level agreement,
which in the simplest case consists merely of the service description.

In case multiple services are required for providing the functionality re-
quested in the goal, composition is required. During composition, discovery
based on sub-goals, i.e., parts of the goal, might be required. The outcome of
the composition step is an invocation plan, i.e., a workflow description that
prescribes the services to be invoked, as well as the order in which they need
to be invoked, possibly including parallelism (several services may be invoked
in parallel). Such an invocation plan may include goals, which would require
dynamic discovery of services during execution. The orchestration description
of a WSMO Web service can be seen as such an invocation plan. The simplest
invocation plan is a single Web service.

Finally, the invocation plan is executed, which means that the Web services
are invoked. The choreography of a Web service prescribes how the invocation
takes place; it describes which messages need to be sent to the provider and in
which order, as well as the messages which can be expected. In case a sub-goal
is encountered in the invocation plan, dynamic discovery is required, i.e., a
new service fulfilling this goal needs to be discovered. Furthermore, in case
an exception occurs, e.g., the service cannot be reached or provides erroneous
output information, the invocation plan may need to be updated, possibly
requiring the discovery of additional services to fill the place of the erroneous
service.

For more information about different uses of WSMO we refer the reader to
[57]. For further information concerning Web service discovery we refer the
reader to [114, 131, 94, 82]; the topic will also be discussed in more detail in
Chapter 6. For further information concerning Web service composition we
refer to the reader to [112, 129, 74, 19, 95].

In the remainder of this book we are concerned with a language for describ-
ing Semantic Web services based on WSMO, called the Web Service Modeling
Language.



4

The Basic WSML Language

The Web Service Modeling Language WSML [68] is a concrete formal lan-
guage based on the conceptual model of WSMO [57], which we described in
the previous chapter. As such, it provides a language for describing ontolo-
gies, goals, Web services, mediators, and their interrelationships in the way
envisioned by WSMO. Besides providing an ontology language for use with
Web service description, WSML also allows using the Semantic Web ontology
languages RDF schema [28] and OWL (DL) [46] (see also Section 2.2) for
describing the terminologies used in goal and Web service descriptions.

The semantic foundation of any Web service description is the ontology
language used for describing the terminology. WSML recognizes two impor-
tant Knowledge Representation paradigms in this context, namely Description
Logics [11] and logical rule-based languages [96]. The user may choose which
paradigm to use: Description Logics, rules, a common subset, or a common
superset. To this end, WSML defines a number of different variants : WSML-
Core marks the common subset, WSML-DL marks the Description Logics
paradigm, WSML-Rule marks the rules paradigm, and WSML-Full marks
the common superset.

WSML defines an ontology language for WSML-Full. The other variants
are obtained by suitably restricting the syntax of the language. The language
variant also determines which Semantic Web ontology languages may be used.
WSML-Core and Rule permit the use of a subset of OWL DL, inspired by
[66]. The DL and Full variants permit the use of arbitrary OWL DL. Finally,
a subset of RDF Schema may be used with WSML-Core and DL, and all of
RDF Schema may be used with WSML-Rule and Full.

The WSML ontology language can be seen as a sub-language of WSML.
The other sub-languages are the languages used for the functional, nonfunc-
tional, and behavioral description, i.e., the languages used to realize WSMO
capabilities, non-functional properties, and choreographies. These languages
all allow using terminology defined in ontologies, and there is considerable
overlap between the ontology languages, and specifically language of logical



30 4 The Basic WSML Language

expressions, and the expressions used in these other sub-languages, as we shall
see in this chapter.

Orthogonal to the 4 sub-languages are the three concrete syntaxes of
WSML for the specification and exchange of WSML descriptions. The sur-
face syntax is the primary syntax of WSML; its structure and keywords are
based on the WSMO conceptual model, and it is primarily meant for the
specification and viewing of WSML descriptions by human users. The XML
and RDF representations are meant for the exchange of WSML descriptions
over the Web, as well as RDF-based access of WSML descriptions.

This chapter is further structured as follows. In Section 4.1 we describe the
role of the different components of Web service descriptions, namely ontology,
functional, nonfunctional, and behavioral descriptions, in more detail. In Sec-
tion 4.2 we describe the principles underlying the major choices underlying
the design of the WSML language. Section 4.3 describes the WSML variants
and their interrelationships in more detail. We introduce the WSML language
through a description of its surface syntax in Section 4.4. Finally, we describe
the XML and RDF syntaxes of WSML in Section 4.5.

We note here that the normative specification of the WSML syntax is in the
form of an abstract syntax that may be found in [29]. The concrete surface
syntax [68] and XML [133] and RDF [45] representations are based on this
abstract syntax. We do not present the abstract syntax in detail in this book;
instead we refer the interested reader to [29]. We do use parts of the abstract
syntax in the following chapters where necessary to clarify specific aspects of
the language.

4.1 Components of Web Service Descriptions

Figure 4.1 depicts the elements of a Web service description. The ontology
is the basis for the description; it provides the terminology used in the other
elements, and the ontology language provides the basic semantics used by the
other descriptions. The other elements of the descriptions are the (i) non-
functional properties (NFP), (ii) the functional description (i.e., capability),
and (iii) the behavioral description (i.e., choreography).

Fig. 4.1. Elements of a WSML Web service description



4.1 Components of Web Service Descriptions 31

4.1.1 Ontologies

The basis of any Web service description is the ontology that defines the termi-
nology used in the description. Such an ontology defines the concepts that are
relevant for the business, relationships between the concepts (i.e., attributes),
as well as additional background information (in the form of axioms). Exam-
ples of concepts are Product, Book, ShoppingBasket, and Customer. Examples
of attributes are hasPrice, hasAuthor, and hasLineItem, hasShoppingBasket. Ex-
amples of axioms are “each Product has a price”, “a Customer has at most 1
Shoppingbasket”, and “if a Customer has bought products with a total worth
of at least e1000 in the preceding year, he is a GoldCustomer”.

Ontologies serve several purposes in Web service descriptions, namely:

• They form a common terminology for the description of Web services and
goals that is shared between requesters and providers of services, thereby
enabling interoperation.

• They contain background information about the domain, thereby enabling
reasoning using this domain knowledge.

• They form the data model for the Web service inputs and outputs; the
actual messages exchanged between the service requester and provider
contain instances of concepts and relations in the ontology.

There are different languages that may be used for the description of such
ontologies. RDF Schema and OWL DL (described in Chapter 2) are two such
ontology languages. WSML also provides an ontology language, which is based
on the conceptual model of ontology description of WSMO.

In fact, WSML provides a range of increasingly expressive ontology lan-
guages through its language variants, which are described in more detail in
the next section. The chosen language variant determines the semantics of
the ontology description, which is used by the non-functional properties and
functional and behavioral description. Ontology descriptions, and specifically
the semantics of the WSML variants and combinations with RDF Schema and
OWL DL ontologies, are described in more detail in Chapter 5.

4.1.2 Functional Description

As prescribed by WSMO, a functional description is specified as the capability
of a goal or Web service. WSML defines two kinds of capabilities: set-based ca-
pabilities, which correspond to the concepts of a task ontology and state-based
capabilities, in which part of the WSML ontology language is used to describe
the assumptions, effects, pre-conditions, and post-conditions comprising the
capability; the terminology used in the description of the capability is defined
in (RDF Schema, OWL DL, or WSML) ontologies.

When considering set-based capabilities, a capability is viewed as a set
of pieces of functionality. When considering state-based capabilities, a Web
service is viewed as a function: the pre-conditions are conditions on the inputs



32 4 The Basic WSML Language

of this function (Web service), while the post-conditions are conditions on the
outputs of the service.

The semantics of functional descriptions (see Chapter 6) uses (for the case
of set-based capabilities) and extends (for the case of state-based capabilities)
the semantics of ontology descriptions. The semantics of set-based capabilities
is based on the semantics of ontologies. The semantics of state-based capabil-
ities is based on a notion of states ; the state before execution of the service
is known as the pre-state, while the post-state is the state after execution of
the service.

Both kinds of capability descriptions are primarily used for Web service
discovery.

Fig. 4.2. The match operator

The requester would formulate the desired
functionality using a goal description; the
provider would formulate the provided func-
tionality in a Web service description. A sim-
ple matching operator, match, takes two
functional descriptions (i.e., capabilities) as
its arguments and returns a degree of match-
ing, as illustrated in Figure 4.2. The degrees
of match that can be returned are determined by the actual definition of the
operator. A specific discovery mechanism implements the operator and de-
fines the degrees of match that may be returned. Most discovery mechanisms
would at least return a degree non-match in case the capabilities do not match
at all, and a degree full match in case the two completely correspond.

4.1.3 Behavioral Description

With a description of the behavior of a Web service we mean a description of
the input messages it expects, the output messages it sends, and their inter-
dependencies: the kinds of output messages it sends, as well as the message it
expects, might depend on the content of messages that have been received ear-
lier in the interaction with the requester. Therefore, a behavioral description
of a Web service may be a complex process description with such elements as
sequencing (e.g., if a message of type A is received, a message of type B is sent)
and conditional splits (e.g., if the method of delivery is “Postal Service”, send
only a confirmation; if the method of delivery is “Package service”, send con-
firmation and a tracking number). This kind of information enables checking
the compatibility of interfaces. Similar to matching capability descriptions,
a compatibility checker determines whether two behavioral descriptions (i.e.,
choreographies) can communicate. In case communication is not possible, a
list of conflicts may be returned by the checker. These conflicts may range
from ontological mismatches to behavioral mismatches.

Like in functional descriptions, conditions in behavioral descriptions are
written using the WSML ontology language and behavioral descriptions are
based on terminology defined using ontologies. The behavior of a service is



4.2 Design Principles of WSML 33

described in terms of state transition rules. Intuitively, if the condition of
such a rule is satisfied, the rule is executed and the state of the conversation
is changed accordingly. Such state changes may correspond to sending or
receiving messages. Behavioral descriptions (choreographies) are illustrated
later in this chapter and described in more detail in Chapter 7.

4.1.4 Non-Functional Properties

Like the functional and behavioral descriptions, non-functional properties also
use terminology defined in ontologies, and their semantics is based on the
semantics of the underlying WSML variant.

A nonfunctional property description consists of the name of the nonfunc-
tional property and a condition that determines the value of the property.
This value can be a simple data value (e.g., an integer or string) or identifier,
but it might be a complex condition determining the actual value (e.g., the
price of using the service might depend on the geographical location of the re-
quester). From a semantic point of view, nonfunctional properties are queries
over an ontology.

4.2 Design Principles of WSML

The leading principle of the design of WSML is the conceptual model of
WSMO. All design choices regarding the structure of the language, constraints
in the syntax, and the names of the keywords follow from the WSMO model.
The design of WSML further follows three main principles.

A language based on two useful well-known formalisms

We conjecture that both Description Logics and Logic Programming are use-
ful formal language paradigms for ontology description and knowledge rep-
resentation on the Semantic Web [87], and, consequently, for Semantic Web
services. In fact, the Web Ontology Language OWL is based on Description
Logics and logical rule-based reasoning with RDF and rule-based extensions
of RDF (e.g., [5, 79, 43]) are commonplace. The formal properties, as well as
reasoning algorithms, for both paradigms have been thoroughly investigated
in the respective research communities, and efficient reasoning implementa-
tions are available for both paradigms. WSML should leverage the research
that has been done in both areas, and the implementations that are available,
by catering for these language paradigms.

The difference in the expressiveness and underlying assumptions of both
paradigms should be overcome by defining means for interaction between de-
scriptions in both paradigms. On the one hand, it is desirable to use a com-
mon subset of both paradigms for such interaction (cf. [66]) so that it is not
necessary to compromise on computational properties and so that existing



34 4 The Basic WSML Language

implementations for both paradigms may be used. On the other hand, us-
ing a common subset requires compromising on expressiveness, which is not
desirable in many situations; a common superset would include the expressive-
ness of both paradigms, but would require compromising on computational
properties such as decidability (cf. [93]).

Web Language

WSML is meant to be a language for the Semantic Web. Therefore, WSML
needs to take into account and adopt the relevant (Semantic) Web standards.
We proceed with a description of the Web standards that are relevant to
WSML.

The Web has a number of standards for object identification and the repre-
sentation and manipulation of data that can be directly adopted by any Web
language, including WSML. The Web architecture [80] prescribes the use of
the standard URI [17], and its successor IRI [49], for the identification of ob-
jects on the Web. Therefore, such things as concepts, instances, relations, and
axioms should be identified using URIs. XML Schema [20] describes a number
of data types (e.g., string, integer, date) and XQuery [98] describes a number
of datatype functions and operators for manipulating and comparing data
conforming to these types. These data types and functions and operators can
be adopted for the representation and manipulation of concrete data values.

There are, at the time of writing, three (Semantic) Web languages for the
exchange of data and information that are relevant to WSML (see also Section
2.2). Recall that

• the most basic of the Semantic Web languages is XML [27], which provides
a structured format for exchanging data over the Web. In fact, XML is
part of the foundation for the Semantic Web; it is used, for example, for
transmitting RDF data over the Web [14];

• RDF [90] is the standard language for exchanging (semi-)structured data
over the Semantic Web. RDF Schema [28] provides a lightweight ontology
language for RDF that allows representing classes, properties, and domain
and range restrictions; and

• OWL [46] is the standard ontology language for the Semantic Web, ex-
tending RDF schema; the sub-language OWL DL provides a means for
exchanging Description Logic-based ontologies over the Web.

One of the basic design principles for languages on the Semantic Web is
to reuse existing (semantic) Web languages as much as possible. Therefore,
WSML should use the mentioned languages as much as possible for the ex-
change of ontology (and Web service) descriptions.

At the time of writing, there is no standard rules language for the Semantic
Web. However, such an effort is underway in the context of the Rule Inter-
change Format Working Group.1 At the time of writing, there is a working
1 http://www.w3.org/2005/rules/wg



4.2 Design Principles of WSML 35

draft comprising the specification of the basic logic dialect of RIF, which is a
negation-free logical rules language [22], and there is a working draft specify-
ing the interoperation between RIF and RDF/OWL [43].

RDF Schema and OWL provide ontology modeling capabilities. Since these
are the standard languages for modeling ontologies on the Semantic Web, it
may be expected that there will be many ontologies on the Web that are
modeled using these languages. Therefore, it should be possible to use RDF
Schema and OWL ontologies for defining terminologies used in WSML Web
service descriptions.

We consider query languages such as SPARQL [117] beyond the scope of
WSML. However, SPARQL may be used to query the RDF representation of
WSML, as discussed in Section 4.5.

User-friendly surface syntax

It has been argued that tools hide language syntax from the user, and thus
a user-friendly surface syntax is not necessary; however, as has been seen, for
example, with the adoption of SQL, an expressive but understandable syntax
is crucial for successful adoption of a language. Developers and early adopters
of the language will have to deal with the concrete syntax of any new language.
This trend is also visible on the Semantic Web, with the development of surface
syntaxes for RDF (e.g., N-Triples [65, Chapter 3] and Turtle [15]) and OWL
(e.g., [75]) which are easier to read and write for the human user than the
standard exchange syntaxes based on RDF/XML [14, 46].

A drawback of using an expressive formal logical language is that state-
ments in the language are often hard to understand and use by non-expert
users. Therefore, WSML should provide a means for hiding complex logical
formulas from non-expert users who are mainly interested in the conceptual
modeling of ontologies and not in complex logical axioms.

The following sections describe how these design principles are realized in
WSML. Section 4.3 describes the framework of WSML language variants,
which correspond to the relevant well-known formalisms of the first design
principle. Section 4.4 describes the different modeling constructs in WSML
using the normative surface syntax, which is meant to be user-friendly, and in
which URIs and XML datatypes play an important role. In Section 4.6 we de-
scribe how RDF and OWL ontologies can be leveraged in WSML descriptions.
Finally, in Section 4.5 we describe how WSML descriptions can be exchanged
using its XML and RDF representations, and we discuss how SPARQL can
be used for querying WSML descriptions.



36 4 The Basic WSML Language

4.3 WSML Language Variants

Following the principle, detailed in the previous section, of using both the
Description Logic (DL) and Logic Programming2 (LP) paradigms, WSML in-
corporates a number of different language variants, corresponding to the DL
and LP paradigms, and their possible (subset and superset) interaction. Fig-
ure 4.3 shows the WSML language variants and their interrelationships. The
variants differ in logical expressiveness and underlying language paradigms;
they allow users to make a trade-off between the expressiveness of a variant
and the complexity of reasoning for ontology modeling on a per-application
basis. Additionally, different variants are more suitable for different kinds of
reasoning and representation.

WSML-DL WSML-Rule

WSML-Flight

WSML-Full

WSML-Core

Fig. 4.3. The WSML variants

WSML-Core is based on an intersection of the Description Logic SHIQ and
Horn Logic, also known as Description Logic Programs [66].
It has the least expressive power of the WSML variants, and
is a common subset of the DL-based and LP-based variants.
That is, every WSML-Core description is also a WSML-DL
and WSML-Flight/Rule description.
WSML Core ontologies, goals, and Web services may import
OWL DLP (a subset of OWL DL) ontologies. See Section 4.6
for more details.

2 With Logic Programming we mean a declarative logic-based rules language with
negation under the Well-Founded [61] or the Stable Model [62] Semantics.



4.3 WSML Language Variants 37

WSML-DL is the Description Logic variant of WSML, and captures the
Description Logic SHIQ(D), which corresponds to a large
part of (the DL species of) OWL [46]. Furthermore, this vari-
ant is used for the interoperation with OWL DL ontologies.
WSML-DL ontologies, goals, and Web services may import
OWL DL ontologies.

WSML-Flight is the least expressive of the two LP-based variants of WSML.
Compared with WSML-Core, it adds features such as meta-
modeling, constraints, and nonmonotonic negation. WSML-
Flight is based on a Logic Programming variant of F-Logic [88]
and is semantically equivalent to Datalog with inequality and
(locally) stratified negation [118].
Technical issues related to the layering between the (DL-based)
WSML-Core and (F-Logic-based) WSML-Flight are discussed
in detail in [34], and the specific layering issues in WSML are
discussed in detail in [32].
Finally, the WSML-Flight variant can be used for combina-
tions with RDF graphs and RDFS ontologies. WSML-Flight
ontologies, goals, and Web services may import RDF graphs
and RDFS ontologies.

WSML-Rule extends WSML-Flight with further features from Logic Pro-
gramming, namely the use of function symbols, unsafe rules,
and unstratified negation. There are two prominent semantics
for logic programs with unstratified negation, namely the Sta-
ble Model Semantics [62] and the Well-Founded Semantics [61];
with respect to the task of query answering, the latter can be
seen as an approximation of the former. Since the Stable Model
Semantics is more general, WSML-Rule (in version 0.3 [29])
adopts the Stable Model Semantics, but implementations may
use the Well-Founded Semantics as an approximation for the
task of query answering. See Chapter 5 for more details.

WSML-Full unifies WSML-DL and WSML-Rule. A definition of the se-
mantics for WSML-Full, generalizing WSML-DL and WSML-
Rule, is proposed in [32, 33]. However, as the combination of
Description Logics and nonmonotonic logic programs is still
an open research issue – some work has been done on the
topic [51, 126, 30, 31, 107, 108, 36], but there is no consensus
on which is the right semantics for the combination. Therefore,
the current version of WSML does not define a semantics for
WSML-Full, but instead outlines a number of properties such
a semantics should have.

WSML has two alternative layerings, namely, WSML-Core ⇒ WSML-DL ⇒
WSML-Full and WSML-Core ⇒ WSML-Flight ⇒ WSML-Rule ⇒ WSML-
Full. For both layerings, WSML-Core and WSML-Full mark the least and



38 4 The Basic WSML Language

most expressive layers. The two layerings are to a certain extent disjoint,
namely the inter-operation between WSML-DL, on the one hand, and WSML-
Flight and -Rule, on the other, is only possible through a common subset
(WSML-Core) or through a very expressive superset (WSML-Full). The pre-
cise properties of language layering in WSML are shown Section 5.3 of this
book.

4.4 WSML Language and Surface Syntax

In this section we introduce the WSML language through an introduction
of its surface syntax. The other syntaxes of WSML (XML and RDF) are
described in Section 4.5. Since different WSML language variants have dif-
ferent underlying language paradigms, there are differences in the language
constructs which may be used in each of the variants, especially in the WSML
ontology language.

Besides the mentioned mappings to XML and RDF, which allow exchang-
ing descriptions over the Web, WSML addresses the “Web language” design
principle through the use of IRIs [49] for the identification of objects and
resources in WSML and the use of XML schema datatypes [20] for typing
concrete data values, as described in Section 4.4.1. The reuse of XQuery com-
parators and functions is addressed through the use of corresponding built-in
predicates, as described in [68, Appendix B.2].

The “user-friendly surface syntax” design principle is addressed through
the definition of WSML in terms of a normative surface syntax with keywords
based on WSMO. Furthermore, “inferring” and “checking” constraints on at-
tributes (described below) are distinguished using the impliesType and ofType

keywords.
Finally, WSML distinguishes between the modeling of the different con-

ceptual elements on the one hand and the specification of complex logical de-
finitions on the other. To this end, the WSML syntax is split into two parts:
the conceptual syntax and logical expression syntax. The conceptual syntax is
based on the structure of the WSMO conceptual model and is independent
from the particular underlying language paradigm; it shields the user from the
particularities of the formal language. The logical expression syntax provides
access to the full expressive power of the language underlying the particular
variant. The basic entry points for logical expressions in the conceptual syntax
are the axioms in ontologies, the assumptions, preconditions, postconditions,
and effects in capability descriptions, and the transition rules in choreography
descriptions. We start with a description of identifiers in WSML, in Section
4.4.1. We proceed to describe the common elements of the conceptual syntax
and WSML ontologies in the Sections 4.4.2 and 4.4.3. The logical expression
syntax is described in Section 4.4.4. Finally, we describe Web services, goals,
and mediators in Sections 4.4.5, 4.4.6, and 4.4.7.



4.4 WSML Language and Surface Syntax 39

4.4.1 Identifiers in WSML

WSML has three kinds of identifiers, namely, IRIs, compact IRIs, which are
abbreviated IRIs, and data values. Compact IRIs are specific to the surface
syntax, and do not appear in the XML and RDF serialization.

IRIs

An IRI (Internationalized Resource Identifier) [49] uniquely identifies a re-
source (e.g., concepts, relations, individual) in a Web-compliant way, following
the W3C Web Architecture recommendation [80]. The IRI proposed standard
is the successor of the popular URI standard and has already been adopted
in various W3C activities such as SPARQL [117]. In the surface syntax IRIs
are delimited using an underscore and double quote ‘ ”’, and a double quote
‘”’, for example: ”http://www.wsmo.org/wsml/wsml-syntax#”.

In order to enhance legibility in the surface syntax, an IRI can be abbre-
viated to a compact IRI, which is of the form prefix#localname. The prefix
and separator ‘prefix#’ may be omitted, in which case the name falls in the
default namespace. Both the namespace prefixes and the default namespace
are specified at the top of a WSML document (see Listing 4.1 for an example).

Our concept of a compact IRI corresponds with the use of QNames in RDF
and is slightly different from QNames (Qualified Names) in XML, where a
QName is not merely an abbreviation for an IRI, but a tuple <namespaceURI,

localname>. Since WSML is a language for the Semantic Web, we follow the
Semantic Web recommendation RDF in this respect.

We use the following prefixes throughout the book: wsml stands for the
WSML namespace http://www.wsmo.org/wsml/wsml-syntax#; xsd stands for the
XML schema namespace http://www.w3.org/2001/XMLSchema#; rdf stands for
the RDF namespace http://www.w3.org/1999/02/22-rdf-syntax-ns#; rdfs stands
for the RDFS namespace http://www.w3.org/2000/01/rdf-schema#; owl stands
for the OWL namespace http://www.w3.org/2002/07/owl#. When not explicitly
specified, the default namespace is assumed to be an example namespace, e.g.,
http://example.org/example#.

Data Values

Data values in WSML are either strings, integers, decimals, or structured data
values (e.g., dates and XML content). Strings are Unicode character sequences
delimited with double quotes (e.g., ”John Smith”), where quotes are escaped
using the backslash character ‘\’; integers are sequences of digits, optionally
preceded with the minus symbol (e.g., -77 0 14 6789); decimals consist of two
sequences of digits separated with a point, optionally preceded with the minus
symbol (e.g., -56.93 -0.87 67.865 3458.7).

WSML defines constructor functions, called datatype wrappers, for creat-
ing structured data values using strings, integers, and decimals; the names of



40 4 The Basic WSML Language

these wrappers correspond to the IRIs of the corresponding (XML schema)
datatypes. For example, the date “March 15th, 2005” is represented as:
xsd#date(2005,3,15).

Strings, integers, and decimals correspond to values of the respective XML
schema datatypes [20] string, integer, and decimal. Furthermore, the datatypes
recommended for use in WSML are the XML schema datatypes (see [68,
Appendix B.1]), plus the RDF datatype rdf#XMLLiteral. Nonetheless, it is
possible to use datatypes beyond this set.

4.4.2 Conceptual Syntax

The WSML conceptual syntax allows for the modeling of ontologies, Web ser-
vices, goals and mediators. It is shared between all variants, with the exception
of some restrictions that apply to the modeling of ontologies in WSML-Core
and WSML-DL.

We first describe annotations and ontology imports, which are common
to ontologies, Web services, goals and mediators. We then describe the con-
ceptual syntax for modeling WSML ontologies, after which we describe the
logical expression syntax and the conceptual syntaxes of WSML Web service,
goal, and mediator descriptions.

Annotations

WSML descriptions may have annotations. Such annotations are used to de-
scribe metadata such as natural language names for WSML elements, data
about the authors, and more elaborate natural language descriptions. An
annotation consists of a property-value pair, and multiple annotations are
grouped into annotation blocks which start with the keyword annotations and
end with the keyword endAnnotations. Such annotation blocks always occur
immediately after the definition of an element (e.g., Web service, ontology,
concept, axiom) and the annotations in the block apply to the identifier of
the element.

Consider the following description:
webService ”http://example.org/webservices/shopping/MediaShoppingService”

annotations
dc#creator hasValue ”James Scicluna”
dc#description hasValue ”Describes a Web service that is capable of selling Multimedia

items”
wsml#version hasValue ”1.2”
dc#title hasValue ”Multimedia Shopping Service”

endAnnotations

It is the description of a Web service that is identified by the IRI http://

example.org/webservices/shopping/MediaShoppingService. The description contains
a number of annotations, namely a creator, a description, a version, and a title.
This particular description reuses the creator, description, and title properties
defined by Dublin Core [137], and the version property defined by WSML.



4.4 WSML Language and Surface Syntax 41

Ontology Imports

Ontologies may extend other ontologies by importing them. Goals, Web ser-
vices, mediators, capabilities, interfaces, and choreographies may import on-
tologies for using the terminologies in the respective descriptions.

Ontology imports are declared using the importsOntology keyword, followed
by a list of IRIs identifying the ontologies to be imported. The imported
ontologies may be WSML, RDF Schema, or OWL DL ontologies. For more
considerations about importing RDF and OWL in WSML see Section 4.6.

4.4.3 Ontologies

An ontology in WSML consists of the elements concept, relation, instance, re-

lationInstance and axiom. Additionally, an ontology may have annotations and
may import other ontologies. We start the description of WSML ontologies
with an example which demonstrates the elements of an ontology, in Listing
4.1, and describe the individual elements in more detail below.

The top of the listing illustrates how the WSML variant is declared and
how the default namespace and namespace prefixes are declared.

Concepts

The notion of concepts (sometimes also called ‘classes’) plays a central role in
ontologies. Concepts form the basic terminology of the domain of discourse. A
concept may have instances and may have a number of attributes associated
with it. The annotations, as well as the attribute definitions, are grouped
together in one syntactical construction, as can be seen from the example
concept book in Listing 4.1.

Attribute definitions can take two forms, namely constraining (using
ofType) and inferring (using impliesType) attribute definitions. Constraining
attribute definitions define a typing constraint on the values for this attribute,
similar to integrity constraints in Databases; inferring attribute definitions im-
ply that the type of the values for the attribute is inferred from the attribute
definition, similar to range restrictions on properties in RDFS and universal
value restrictions in OWL.3

It is possible to declare several types for a single attribute; these are inter-
preted conjunctively, which means that every type applies. The list may be
empty, if the type of the attribute is not known, as is the case for the property
hasStageName of the concept Artist in Listing 4.1.

Each attribute definition may have a number of associated features,
namely, transitivity, symmetry, reflexivity, and the inverse of an attribute,
as well as minimal and maximal cardinality constraints.

3 The distinction between inferring and constraining attribute definitions is ex-
plained in more detail in [37, Section 2].



42 4 The Basic WSML Language

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−flight”
namespace { ”http://example.org/ontologies/Media#”,

dc ”http://purl .org/dc/elements/1.1/”,
xsd ”http://www.w3.org/2001/XMLSchema#”,
foaf ”http://xmlns.com/foaf/0.1/”,
wsml ”http://www.wsmo.org/wsml/wsml−syntax#” }

ontology ”http://example.org/ontologies/Media”
annotations

dc#creator hasValue ”Jos de Bruijn”
dc#type hasValue {”Domain Ontology”, wsml#Ontology}
dc#description hasValue ”Describes the media domain, where media are understood as books,

CDs, and DVDs. Imports the FoaF ontology for description of persons.”
dc#subject hasValue ”Media”
wsml#version hasValue ”Revision: 1.7 ”
dc#language hasValue ”en−US”
dc#title hasValue ”Media Ontology”
dc#date hasValue ”2007−07−10”

endAnnotations

importsOntology
{ ”http://xmlns.com/foaf/0.1/”}

concept MediaItem
hasTitle ofType (1 ∗) xsd#string
hasContributor ofType (1 ∗) Artist

concept Artist subConceptOf foaf#Person
hasStageName ofType {}
contributorOf inverseOf(hasContributor) ofType MediaItem

concept CD subConceptOf MediaItem

concept Musician subConceptOf Artist

instance prince memberOf Musician
hasStageName hasValue ”Prince”
hasStageName hasValue ”The Artist Formerly Known As Prince”
hasStageName hasValue ”http://z.about.com/d/altreligion/1/0/i/S/2/tafkap.jpg”
foaf#name hasValue ”Prince Rogers Nelson”

instance ”http://z.about.com/d/altreligion/1/0/i/S/2/tafkap.jpg”
annotations

dc#format hasValue ”image/jpeg”
endAnnotations

Listing 4.1. An example WSML ontology

Constraining attribute definitions, as well as cardinality constraints, require
closed-world reasoning and are thus not allowed in WSML-Core and WSML-
DL. As opposed to features of roles in Description Logics, attribute features
such as transitivity, symmetry, reflexivity and inverse attributes are local to a
concept in WSML. Thus, none of these features may be used in WSML-Core
and WSML-DL.



4.4 WSML Language and Surface Syntax 43

Relations

Relations in WSML can have an arbitrary arity, may be organized in a hier-
archy using subRelationOf and the parameters may be typed using parameter
type definitions of the form (ofType type) and (impliesType type), where type is
a concept identifier or a (possibly empty) list of concept identifiers. The usage
of ofType and impliesType correspond with the usage in attribute definitions.
Namely, parameter definitions with the ofType keyword are used to check the
type of parameter values, whereas parameter definitions with the impliesType

keyword are used to infer concept membership of parameter values.
The following is an example of a relation.

relation stageNameContributor(ofType {}, ofType xsd#string)
annotations

dc#description hasValue ”Relation between (the stage names of) contributors to media items
and the titles of these items.”

endAnnotations

WSML-Core and WSML-DL do not allow using relations; unary and binary re-
lations in Description Logics correspond to concepts and attributes in WSML.

Instances

A concept may have a number of instances associated with it. Instances explic-
itly specified in an ontology are those that are shared as part of the ontology.
However, most instance data exists outside the ontology in private databases.
WSML does not prescribe how to connect such a database to an ontology, since
different organizations will use the same ontology to query different databases
and such corporate databases are typically not shared. In case the instance
data resides in an RDF document, the importsOntology construct can be used
for referring to (importing) the data.

An instance may be member of zero or more concepts and may have a
number of attribute values associated with it. Note that the specification
of concept membership is optional and the attributes used in the instance
specification do not necessarily have to occur in the associated concept defini-
tion. Consequently, WSML instances can be used to represent semi-structured
data, since without concept membership and constraints on the use of attri-
butes, instances form a directed labeled graph. Because of this possibility to
capture semi-structured data, most RDF graphs can be represented as WSML
instance data, and vice versa.

Axioms

Axioms provide a means to add arbitrary logical expressions to an ontology.
Such logical expressions can be used to refine concept or relation definitions
in the ontology, but also to add arbitrary axiomatic domain knowledge or
express constraints. The following is an example of an axiom that that domain
knowledge to the ontology of Listing 4.1.



44 4 The Basic WSML Language

axiom stageNameContributorAxiom
annotations

dc#relation hasValue stageNameContributor
dc#description hasValue ”Defines the stageNameContributor relation as the relation

between stage names and titles of media items they contributed to.”
endAnnotations
definedBy

stageNameContributor(?x,?y) :− ?z memberOf Artist and ?z[hasStageName hasValue ?x,
contributorOf hasValue ?w] and ?w[hasTitle hasValue ?y].

Besides their use in ontologies, special kinds of axioms are used in goal and
Web service capability descriptions; see Section 4.4.5. The syntax of logical
expressions is explained in more detail below.

4.4.4 Logical Expression Syntax

The WSML logical expression syntax is used in axioms of ontologies and
in Web service capabilities, as well as the transition rules of Web service
choreographies and in non-functional properties. The use of logical expressions
in axioms was described in the previous section. The use of logical expressions
in capabilities and choreographies will be explained in the next section. We
will first explain the general logical expression syntax, which encompasses all
WSML variants, and then review the restrictions on this general syntax for
each of the variants.

The general logical expression syntax for WSML has a first-order logic
style, in the sense that it has constants, function symbols, variables, predicates
and the usual logical connectives, namely negation, disjunction, conjunction,
implication, and quantifiers. Furthermore, WSML has constructs for modeling
concepts, attributes, attribute definitions, and subconcept and concept mem-
bership relationships, inspired by F-Logic [88]. Finally, WSML has a number
of connectives specifically for the Logic Programming based variants, namely
default negation (negation-as-failure), LP-implication and database-style in-
tegrity constraints.

Variables in WSML start with a question mark, followed by an arbitrary
number of alphanumeric characters, e.g., ?x, ?name, ?123. Free variables in
WSML (i.e., variables that are not explicitly quantified), are implicitly uni-
versally quantified outside of the formula (i.e., the logical expression in which
the variable occurs is the scope of quantification), unless indicated otherwise,
through the sharedVariables construct (see the next section) and unless the log-
ical expression occurs in a non-functional property, in which case the variables
are interpreted as parameters, that may be replaced with ground terms.

Terms are either identifiers (i.e., IRIs or data values), variables, or con-
structed terms of the form f(t1, . . . , tn). An atom is, as usual, a predicate sym-
bol with a number of terms as arguments, e.g., p(t1, . . . , tn). Besides the usual
atoms, WSML has a special kind of atoms, called molecules, which are used
to capture information about concepts, instances, attributes and attribute
values. WSML features two types of molecules:



4.4 WSML Language and Surface Syntax 45

• An isa molecule is a concept membership molecule of the form t1 memberOf

t2 or a subconcept molecule of the form t1 subConceptOf t2, where t1 and
t2 are terms.

• An object molecule is an attribute value expressions t1[t2 hasValue t3], a
constraining attribute signature expression t1[t2 ofType t3], or an inferring
attribute signature expression t1[t2 ofType t3], where t1, t2, and t3 are terms.

WSML has the usual first-order connectives, written in ASCII style in the
surface syntax: the unary negation operator neg, and the binary operators
for conjunction and, disjunction or, right implication implies, left implication
impliedBy, and dual implication equivalent. Variables may be universally quan-
tified using forall or existentially quantified using exists. First-order formulae
are obtained by combining atoms using the mentioned connectives in the usual
way. The following are examples of first-order formulae in WSML:

//every person has a father
forall ?x (?x memberOf Person implies exists ?y (?x[ father hasValue ?y])) .
//john is member of a class which has some attribute called ’name’
exists ?x,?y (john memberOf ?x and ?x[name ofType ?y]).

Apart from first-order formulae, WSML allows using the negation-as-failure
symbol naf in front of atomic formulas, the special logic programming impli-
cation symbol :-, and the integrity constraint symbol !-. A logic programming
rule consists of a head and a body, separated by the :- symbol. An integrity
constraint consists of the symbol !- followed by a rule body. Negation-as-failure
naf is only allowed to occur in the body of a logic programming rule or an
integrity constraint. The following logical connectives are allowed in the head
of a logic programming rule: and, implies, impliedBy, and equivalent. The fol-
lowing connectives are allowed in the body of a rule (or constraint): and, or,
and naf. The following are examples of LP rules and database constraints:

//every person has a father
?x[ father hasValue f(?y)] :− ?x memberOf Person.
//Man and Woman are disjoint
!− ?x memberOf Man and ?x memberOf Woman.
//in case a person is not involved in a marriage, the person is a bachelor
?x memberOf Bachelor :− ?x memberOf Person and naf Marriage(?x,?y,?z).

Particularities of the WSML Variants

Each of the WSML variants defines a number of restrictions on the logical
expression syntax. For example, LP rules and constraints are not allowed
in WSML-Core and WSML-DL. Table 4.1 mentions a number of language
features and indicates in which variant the feature may be used, to give an
idea of the differences between the logical expressions of each variant.

• WSML-Core allows only first-order formulae that are equivalent to the
DLP subset of SHIQ(D) [66]. This subset is very close to the 2-variable
fragment of first-order logic, restricted to Horn logic. Although WSML-
Core might appear in the Table 4.1 featureless, it captures most of the



46 4 The Basic WSML Language

Feature Core DL Flight Rule Full

Classical Negation (neg) - X - - X
Existential Quantification - X - - X
(Head) Disjunction - X - - X
n-ary relations - - X X X
Meta Modeling - - X X X
Default Negation (naf) - - X X X
LP implication - - X X X
Integrity Constraints - - X X X
Function Symbols - - - X X
Unsafe Rules - - - X X

Table 4.1. Logical expression features in WSML variants

conceptual model of WSML, but has only limited expressiveness within
the logical expressions.

• WSML-DL allows first-order formulae that can be translated to SHIQ(D).
This subset is very close to the 2-variable fragment of first-order logic.
Thus, WSML-DL allows classical negation and disjunction and existential
quantification in the consequents of implications.

• WSML-Flight extends the set of formulae allowed in WSML-Core by al-
lowing variables in place of instance, concept and attribute identifiers and
by allowing relations of arbitrary arity. In fact, any such formula is al-
lowed in the head of a WSML-Flight rule. The body of a WSML-Flight
rule allows conjunction, disjunction and default negation.
WSML-Flight additionally allows meta-modeling (e.g., classes-as-instan-
ces) and reasoning over the signature, because variables are allowed to
occur in place of concept and attribute names.

• WSML-Rule extends WSML-Flight by allowing function symbols and un-
safe rules, i.e., variables that occur in the head or in a negative body literal
do not need to occur in a positive body literal.

• The logical syntax of WSML-Full is equivalent to the general logical ex-
pression syntax of WSML and allows the full expressiveness of all other
WSML variants.

The separation between conceptual and logical modeling allows for easy adop-
tion by non-experts, since the conceptual syntax does not require expert
knowledge in logical modeling, whereas complex logical expressions require
more familiarity and training with the language. Thus, WSML allows model-
ing of different aspects related to Web services on a conceptual level, while still
offering the full expressive power of the logic underlying the chosen WSML
variant through its logical expression syntax. Part of the conceptual syntax
for ontologies has an equivalent in the logical syntax. The translation between
the conceptual and logical syntax is illustrated in Table 4.2.



4.4 WSML Language and Surface Syntax 47

Conceptual syntax Logical expression syntax
concept A

annotations
B hasValue C

endAnnotations

A[B hasValue C].

concept A subConcepOf B A subConceptOf B.

concept A
B ofType (0 1) C

A[B ofType C].
!− ?x memberOf A and

?x[B hasValue ?y, B hasValue ?z] and ?y != ?z.

concept A B ofType C A[B ofType C].

relation A/n subRelationOf B A(x1 ,...,xn) implies B(x1,...,xn)

instance A memberOf B
C hasValue D

A memberOf B.
A[C hasValue D].

Table 4.2. Translating conceptual to logical syntax

4.4.5 Web services

The functionality, behavior, and other aspects of Web services are described
using WSML Web service descriptions. Such a description consists of a capa-
bility, which describes the functionality, one or more interfaces, which describe
the possible ways of interacting with the service, and nonfunctional proper-
ties, which describe nonfunctional aspects of the service. Listing 4.2 shows the
structure of a simple Web service for adding items to a shopping cart.

Capabilities

WSML allows using two kinds of capabilities: (1) capabilities as concepts of
a task ontology and (2) detailed state-based description of the functionality.
Since concepts represent sets of instances, capabilities of the former kind (1)
are also referred to as set-based capabilities ; capabilities of the latter kind (2)
are referred to as state-based capabilities.

Set-based Capability Description

A set-based capability simply consists of the capability keyword followed by an
IRI identifying a concept in a task ontology. Such a task ontology is typically
imported in the Web service to which the capability belongs. The following
is an example Web service with a capability concerned with buying media
products.

webService ”http://example.org/webservices/shopping/SimpleMediaShoppingService”
importsOntology {

”http://example.org/ontologies/tasks/MediaShoppingTasks”
}

capability ”http://example.org/ontologies/tasks/MediaShoppingTasks#BuyMedia”



48 4 The Basic WSML Language

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−flight”

namespace { ”http://example.org/ontologies/commerce/Commerce#”,
dc ”http://purl .org/dc/elements/1.1/”,
wsml ”http://www.wsmo.org/wsml/wsml−syntax#”,
xsd ”http://www.w3.org/2001/XMLSchema#”,
product ”http://example.org/ontologies/products/Products#”,
prop ”http://example.org/ontologies/WebServiceProperties#” }

webService ”http://example.org/webservices/shopping/AddItemsToCart”
annotations

dc#creator hasValue ”Jos de Bruijn”
dc#description hasValue ”A Web service for adding items to a shopping cart”
wsml#version hasValue ”Revision : 1.53”
dc#title hasValue ”Add items to cart service ”
dc#language hasValue ”en−US”
dc#date hasValue ”2008−01−30”

endAnnotations

importsOntology {
”http://example.org/ontologies/commerce/Commerce”,
”http://example.org/ontologies/products/Products”

}

capability
...

interface
...

nonFunctionalProperty
...

Listing 4.2. An example Web service description

State-Based Capability Description

Preconditions and assumptions describe the state before the execution of a
Web service. While preconditions describe conditions over the information
space – that is, conditions over the input, e.g., correct typing of inputs –
assumptions describe conditions over the state of world that cannot be verified
by the requester of the service, but which might explain failure of the service,
e.g., there must exist a cart with the given (input) identifier, and this cart
must be unique. Postconditions describe the relation between the input and
the output, e.g., a search returns all products related to the given search
criteria. In this sense, they describe the information state after execution of
the service. Effects describe changes caused by the service beyond the inputs
and outputs, e.g., the item is added to the shopping cart.

Listing 4.3 describes the capability of the simple Web service for adding
items to a shopping cart: given a shopping cart identifier and a number of
items, the items are added to the shopping cart with this identifier. The
sharedVariables construct is used to identify variables that are shared between
the pre- and postconditions and the assumptions and effects. Shared variables



4.4 WSML Language and Surface Syntax 49

capability
sharedVariables {?cartId , ?item, ?number}
precondition

annotations
dc#description hasValue ”The cart ID must be a string and the item must be a book.”

endAnnotations
definedBy

?cartId memberOf xsd#string and ?item memberOf product#Product.
assumption

annotations
dc#description hasValue ”There must exist a cart with the given ID

and there must not exist another cart with the same ID.
Furthermore, if there exists a line item with the input item, the variable

?number reflects the quantity currently in the shopping cart ; otherwise it
is 0.”

endAnnotations
definedBy

exists ?cart (?cart memberOf Cart and ?cart[hasId hasValue ?cartId] and
(
exists ?li (?cart [hasItems hasValue ?li ] and ?li [hasProduct hasValue ?item] and

?li [hasQuantity hasValue ?number]) or
?number = 0

) and
neg exists ?x (?x memberOf Cart and

?x[hasId hasValue ?cartId ] and ?x != ?cart))
effect

annotations
dc#description hasValue ”The item is added to the cart ; if the product was already

in the cart , the quantity is increased with 1.”
endAnnotations
definedBy

forall ?cart (?cart [hasId hasValue ?cartId ] memberOf Cart implies
exists ?li ( ?li memberOf LineItem and
?li [hasProduct hasValue ?Item] and ?li [hasQuantity hasValue ?number+1])).

Listing 4.3. An example capability: adding items to a shopping cart

can be used to refer to the input (?cartId and ?item) or share variables between
the pre- and post-condition or assumption and effect (e.g., ?number).

More details about the modeling of capabilities can be found in Chapter 6.

Interfaces and Choreographies

Interfaces describe how to interact with a service from the requester point-of-
view (choreography) and how the service interacts with other services and goals
it needs to fulfill its capability (orchestration). Orchestration descriptions are
external to WSML; WSML allows referring to any orchestration description
identified by an IRI.

WSML provides a language for describing choreographies, called the
WSML choreography language. It is also possible to refer to any choreography
that has an IRI. However, WSML does not say anything about how such a
choreography should be interpreted. We will now give a brief overview of the
WSML choreography language.



50 4 The Basic WSML Language

A choreography description is a model for possible conversations – that is,
sequences of message exchanges – between the service requester and provider.
Patterns of message exchanges are governed by transition rules; given the
current state, the transition rules determine the next step in the conversation.
The messages themselves consist of ontology instance information, and the
background knowledge contained in ontologies is taken into account when
evaluating transition rules.

A central notion in WSML choreographies is the state of a conversation.
Technically, a state consists of instance data of some ontology. State transi-
tions correspond to update, insertion, or deletion of instance data. Commu-
nication between the requester and provider is modeled by marking certain
ontology concepts as in or out concepts; an incoming message (from the re-
quester to the provider) results in the insertion of an instance of an in concept;
inserting an instance of an out concept results in a message being sent from
the provider to the requester.

A single conversation corresponds to a choreography run, which consists
of a start state, a sequence of intermediate states, and an end state. State
transitions are governed by the transition rules; firing of a rule corresponds
to a state transition. Such a state transition may or may not correspond to a
message exchange between the requester and provider.

Listing 4.4 shows an example of an interface description with a chore-
ography. A choreography is defined by a state signature and a set of rules.
The state signature defines the state ontology over which the rules are evalu-
ated and updates performed. In addition, the state signature assigns modes to
ontology concepts and relations. These modes determine the role that a par-
ticular concept/relation plays in the choreography, as well as the relationship
between instances of such a concept/relation and message formats, defined
using, for example, WSDL.

Following the state signature block are the transition rules, which express
conditions that are evaluated with respect to the state and the background
ontologies. If the condition of a transition rule holds in the state, the rule is
fired. If a transition rule fires, the enclosed update rules update to the state
by adding, deleting, or updating facts in the state.

The WSML choreography language is very general, and can be used in a
number of different ways. For example, there is no explicit control flow between
the transition rules – that is, the order of rule firing is not determined by
the order the rules are written, but rather by the conditions at the time of
execution. It is certainly possible to add control flow to the transition rules,
for example by defining a controlled concept that mimics an explicit state
using an integer.
More details about the interface and choreography descriptions can be found
in Chapter 7.



4.4 WSML Language and Surface Syntax 51

interface mediaSearchInterface
annotations

dc#title hasValue ”Media Search Choreography”
dc#description hasValue ”An example of a choreography for searching for media items”

endAnnotations

choreography mediaSearchChoreography

stateSignature mediaSearchSignature

importsOntology ”http://example.org/bookOntology”

in
shoptasks#SearchCatalog withGrounding
”http://example.org/webservices/shopping/mediashoppingservice#wsdl.

interfaceMessageReference(MediaShoppingServicePortType/SearchCatalog/In)”,

out
mediaproduct#MediaProduct withGrounding
”http://example.org/webservices/shopping/mediashoppingservice#wsdl.

interfaceMessageReference(MediaShoppingServicePortType/SearchCatalog/Out)”,

transitionRules mediaSearchTransitions

forall ?search
with

(?search [
hasTitle hasValue ?title ,
hasArtist hasValue ?artist ,
hasMinPrice hasValue ?minPrice,
hasMaxPrice hasValue ?maxPrice,
hasMinRating hasValue ?minRating,
hasMaxRating hasValue ?maxRating

] memberOf shoptasks#SearchCatalog
and ?artist memberOf media#Artist
and exists{?item}(

?item memberOf mediaproduct#MediaProduct and(
?item[hasContributor hasValue ?artist ] or
?item[ hasTitle hasValue ?title ] or
(

?item[hasPrice hasValue ?price ] and
?price >= ?minPrice and
?price <= ?maxPrice

) or
(

?item[hasRating hasValue ?rating ] and
?rating >= ?minRating and
?rating <= ?maxRating

)
)

)
)

do
add(?item[

hasContributor hasValue ?artist ,
hasTitle hasValue ?title ,
hasPrice hasValue ?price ,
hasRating hasValue ?rating

] memberOf mediaproduct#MediaProduct
)
delete(?search memberOf shoptasks#SearchCatalog)

endForall

Listing 4.4. An example interface declaration



52 4 The Basic WSML Language

nonFunctionalProperty
prop#provider hasValue prop#mediaseller
annotations

dc#description hasValue ”The agent providing the service .”
endAnnotations

nonFunctionalProperty
prop#security hasValue prop#highGradeEncryption
annotations

dc#description hasValue ”There is a high grade of encryption , only if the requester is
unique and is known.”

endAnnotations
definedBy

exists ?x(?x memberOf prop#ServiceRequester and naf exists ?y(?y memberOf
prop#ServiceRequester and ?y != ?x) and prop#knownCustomer(?x)) .

nonFunctionalProperty
prop#price hasValue ?price
annotations

dc#description hasValue ”The price for service invocation is determined by the relation
servicePrice , which is defined in the service properties ontology.”

endAnnotations
definedBy

exists ?x(?x memberOf prop#ServiceRequester and servicePrice(?x, ?price)) .

Listing 4.5. Example nonfunctional properties

Non-Functional Properties

The non-functional properties of a service are concerned with aspects of the
service not directly related to its functionality, but that are nonetheless of
interest to the requester. Examples of non-functional properties are: provider
of the service, cost of service invocation, availability, and security.

Non-functional properties should not be confused with annotations: where
annotations are concerned with the description of the service – e.g., creator of
the description, natural language description – non-functional properties are
concerned with the service itself.

As the name indicates, nonfunctional properties are properties, and are
thus essentially name-value pairs. However, in contrast to annotations, it is
possible to say a bit more about nonfunctional properties using logical ex-
pressions. Consequently, there are three kinds of non-functional properties:
(i) simple name-value pairs, (ii) conditional name-value pairs, which should
only be considered if the given logical expression is true (i.e., follows from
the ontology), and (iii) open name-value pairs, where a given logical expres-
sion determines the value(s) of the property. Listing 4.5 shows examples of all
three kinds of nonfunctional properties, all related to the service description
in Listing 4.2.

4.4.6 Goals

Goal descriptions are symmetric to Web service descriptions in the sense
that goals describe desired functionality and Web services describe offered



4.4 WSML Language and Surface Syntax 53

functionality. Therefore, goal descriptions comprise the same modeling ele-
ments as Web service descriptions, namely, a capability, one or more inter-
faces, and non-functional properties.

There are, however, two (potential) differences between goals and Web
services: (i) goals and Web services may be described using different termi-
nologies (ontologies) and (ii) whereas services are described from the provider
point of view, goals are described from the requester point of view.

Different Terminologies

In an ideal world, requesters and providers would use the same domain ontolo-
gies for the description of their goals and Web services, respectively. However,
this cannot be assumed in general. The requester might find it more convenient
to use his own terminology rather than the terminology of providers; different
providers may use different terminologies to describe the same functionality; in
general, it cannot be assumed that the requester is aware of the terminologies
used by the providers.

In case there is a mismatch between the terminologies used in a goal and a
Web service, mapping or mediation is required during discovery, selection, as
well as usage of the service. To mediate between the requester and provider on-
tologies during discovery, it is necessary to be aware of the mappings between
the ontologies. Certain kinds of simple mappings (e.g., subclass axioms) can
be expressed using RDFS or OWL, as well as WSML-Core ontologies; more
expressive mappings can be expressed using the Flight, Rule, or Full vari-
ants of WSML. Besides ontology languages, there are also dedicated mapping
languages that might be used (e.g., [127, 116]).

WSML does not prescribe how a discovery engine should specify or use
ontology mappings. There are, however, a number of ways in which such map-
pings can be made explicit in WSML. A wgMediator specifies a link between a
goal and a Web service. Such a mediator can import an ontology that contains
mappings between the ontologies used in the goal and Web service descrip-
tions. WSML does not prescribe how such a mediator should be used, or how
the mappings in the imported ontology should be processed.

In case a requester or provider knows about ontologies that are used in
potentially matching Web services or goals, the mappings can be imported in
the goal or Web service directly using the importsOntology directive. Mappings
that are imported in this way are virtually added to the ontologies that are
used for the goal or Web service specification.

Provider versus Requester Point of View

Even if the requester and provider use the same ontologies, or their ontologies
have been mapped onto one another, there will be other differences in the
ways the goal and Web service are described. For example, on the one hand,
a requester will describe the information he can provide, but this information



54 4 The Basic WSML Language

may be incomplete because the requester is not willing to disclose everything
he knows due to privacy considerations. The provider, on the other hand, will
describe all information that is required to execute the service.

We now proceed to outline the differences in the points of view of capability
and interface descriptions.

Capability

On the level of a set-based capability description, there is not much difference
between the requester and provider point of view. In a state-based capability
description, however, the requester and provider will have different objectives
in their descriptions of the preconditions, postconditions, assumptions, and
effects.

Preconditions The service provider will want to make sure that all informa-
tion required to execute the service is present when the service is executed.
Therefore, he has an interest in describing the preconditions of the service in
detail. The requester, on the other hand, may want to disclose some of his
(personal) information, but most likely not all of it. Furthermore, if requesters
were to include all their information in the preconditions of every goal, the
task of writing the goal would become unmanageable, and even more so the
processing of the goal. Therefore, we may assume that the requester might
include some of his information in the pre-condition, but it will in no way
be complete. This has implications for possible discovery mechanisms: even
if a Web service provides exactly the requested functionality, it cannot be
assumed in general that the preconditions of a goal will exactly match the
preconditions of the service.

Assumptions With respect to assumptions, neither the requester nor the
provider will want to be really complete. There are many things that must
hold in the real world to ensure that the service can be executed successfully,
e.g., a delivery address must exist, the company providing the service must
not go bankrupt, and war must not break out. While a provider may want
to model the assumption that the provided delivery address must exist in the
real world in order to deliver a product, he will not be poised to model aspects
related to bankruptcy and war. Considerations for the requester are similar:
the requester can guarantee a number of things to hold, but an exhaustive list
(e.g., including guarantees that his house does not have a leaky roof and his
car will have enough gas to drive to the supermarket) would become too long
for any practical use. In general, it may be expected that the provider will in-
clude some assumptions that are directly related to the provided service (e.g.,
for payment, the limit of the credit card must not have been reached) that
might help a potential requester to determine whether the service is suitable
and to explain possible failures in execution of the service, but the description
will not be exhaustive.



4.4 WSML Language and Surface Syntax 55

From the above description it may seem that the prospect of using state-based
capabilities for automated matching is rather bleak when looking at our ex-
pectations concerning the description of preconditions and assumptions, espe-
cially from the side of the requester; if the formal descriptions are not detailed
enough, or even missing, automated matching is not possible. Fortunately, the
situation looks a bit better when considering postconditions and effects. There
are two reasons for this: postconditions and effects are only concerned with
the desired and actual outputs and real-world effects of the service; therefore,
requesters have an interest in including detailed descriptions of the postcon-
ditions and effects in their goals.

Postconditions and Effects The requester has a big interest in what the service
actually “does” for him. If he is interested in specific information (e.g., product
availability) that should be an output of the service, he will describe the
postconditions concerning this information. If he is interested in certain real-
world effects (e.g., product delivery), he will describe the corresponding effects.
The provider may find it more important to ensure that all preconditions and
assumptions are met before executing the service, rather than describing the
output and effects in detail; however, if the provider wants the service to be
found, he will have to describe the postconditions and effects in sufficient
detail.

More details about the modeling of capabilities can be found in Chapter 6.

Interfaces and Choreographies

Considerations for interfaces are similar to those for preconditions. There is
typically a fixed way (or number of ways) in which a service can interact with
a requester. The service provider has an interest in accurately describing this
interface so that potential requesters know how to invoke it. The requester,
on the other hand, may have a large repository of information that could
be sent over the wire; however, it is not practical to describe this all in a
goal. We conjecture that there will be many situations in which a Web service
description contains an accurate interface description, but a matching goal
description does not. That said, if the requester is an automated agent, there
may be a limited number of ways it can interact with services. In that case,
the goal would contain descriptions of the ways the requester can interact
with services. Note that it is, in the general case, unlikely that such interface
descriptions and goals would easily match with interface descriptions in Web
services, even if ontology mapping is applied; it might be necessary to use a
mediator (see the next section).

More details about the interface and choreography descriptions can be found
in Chapter 7.



56 4 The Basic WSML Language

4.4.7 Mediators

Mediators connect different goals, Web services and ontologies, and enable
inter-operation by reconciling differences in representation formats, encod-
ing styles, business protocols, etc. Connections between mediators and other
WSML elements can be established in two different ways:

1. Each WSML element allows for the specification of a number of used
mediators through the usesMediator keyword.

2. Each mediator has (depending on the type of mediator) one or more
sources and one target. Both source and target are optional in order to
allow for generic mediators.

A mediator achieves its mediation functionality either through a Web ser-
vice, which provides the mediation service, or a goal, which can be used to
dynamically discover the appropriate (mediation) Web service.

4.5 XML and RDF Exchange Syntaxes

In the previous section we have introduced the WSML language through its
surface syntax. The surface syntax is a plain text format that uses keywords
resembling natural language. Therefore, this syntax is especially suitable for
consumption by human readers and for writing WSML descriptions by hand.
However, it might not be suitable for exchange over the Web, because it does
not allow reusing existing tools and techniques for such things as parsing,
storing, and retrieving descriptions.

For the purposes of exchange and interoperation with existing Web lan-
guages, WSML comes with an XML syntax [133] and an RDF syntax [45],
called WSML/XML and WSML/RDF, respectively.

WSML/XML documents conform to an XML schema, which has been
specified following the structure of the WSML abstract syntax [29], leveraging
built-in XML mechanisms such as character encoding and namespaces.

WSML/RDF consists of an RDF Schema that captures the structure
of WSML descriptions. Individual WSML descriptions are written as RDF
graphs using vocabulary defined in the schema.

4.5.1 WSML XML Syntax

The WSML XML syntax is essentially an XML version of the surface syntax,
and is thus very similar, both in keywords and in structure. In fact, there
is a one-to-one correspondence between the structure of the WSML abstract
syntax defined in [29] and the structure of WSML/XML.

WSML/XML is defined using an XML schema document.4 XML schema
[53] is a schema language for XML; it defines thee allowed structure of XML
4 http://www.wsmo.org/TR/d36/v0.1/xml-syntax/wsml xml syntax.xsd



4.5 XML and RDF Exchange Syntaxes 57

<wsml xmlns=”http://www.wsmo.org/wsml/wsml−syntax#” variant=”http://www.wsmo.org/wsml/
wsml−syntax/wsml−flight”>

<WebService name=”http://example.org/webservices/shopping/AddItemsToCart”>
<Annotations>
<AttributeValue name=”http://purl.org/dc/elements/1.1#title”>

<Value type=”http://www.w3.org/2001/XMLSchema#string”>
Add items to cart service

</Value>
</AttributeValue>
...

</Annotations>
<importsOntology>http://example.org/ontologies/commerce/Commerce</importsOntology>
<importsOntology>http://example.org/ontologies/products/Products</importsOntology>
<Capability>
<SharedVariables>
<Variable name=”?cartId”/>
<Variable name=”?item”/>
<Variable name=”?number”/>

</SharedVariables>
...

</Capability>
<Interface> ... </Interface>
<NonFunctionalProperty> ... </NonFunctionalProperty>

</WebService>
</wsml>

Listing 4.6. Example Web service written in WSML/XML

instance documents. Every WSML/XML description (e.g., goal, Web service)
is an instance document that must conform to the schema.

Listing 4.6 shows the WSML/XML rendering of the Web service descrip-
tion in Listing 4.2 on page 48. As can be seen from the listing, the structure
of the XML rendering is very close to that of the surface syntax. The root
element of any WSML/XML document is wsml; the variant is indicated us-
ing the variant attribute on the root element. Certain syntactic shortcuts in
the surface syntax, such as the list of imported ontologies in Listing 4.2, are
not used in WSML/XML. For example, every imported ontology requires a
separate importsOntology tag.

Notice that all WSML elements fall in the WSML namespace http://
www.wsmo.org/wsml/wsml-syntax#.

The WSML/XML schema can be found at the following location: http://
www.wsmo.org/TR/d36/v0.1/xml-syntax/wsml xml syntax.xsd. For a de-
tailed description of WSML/XML we refer the reader to [133].

4.5.2 WSML RDF Syntax

WSML/RDF [45] is an RDF Schema [28] vocabulary for writing WSML de-
scriptions. WSML/RDF descriptions are RDF graphs that use this vocabu-
lary. We refer to the RDF Schema that defines WSML/RDF as the WSM-
L/RDF schema.

WSML descriptions group all data related to a particular ontology, Web
service, goal or mediator. In the WSML surface syntax this is achieved



58 4 The Basic WSML Language

by grouping all descriptions under the ontology, webService, goal, ggMedia-

tor, wgMediator, wwMediator, and ooMediator keywords. The same holds for
lower-level entities: concepts in an ontology, for example, group a number
of attribute definitions and state-based Web service capabilities group pre-
conditions, postconditions, assumptions and effects. Conceptually, a WSML
description can be seen as a part-whole hierarchy. An ontology has as parts
the concept, relation, axiom, and instance definitions; in turn, these definitions
are part of the ontology. Similar for Web services, goals and mediators.

To represent the part-whole hierarchy of WSML descriptions we use a part-
whole5 ontology inspired by the work of the Semantic Web Best Practices
Working Group [119]. Each ontology, Web service, goal, and mediator is a
node in the RDF graph that is connected to all its parts using the relationship
hasPart directly. Figure 4.4 shows part of the part-whole hierarchy.

Fig. 4.4. WSML descriptions as part-whole hierarchies

In some cases it is necessary to disambiguate between different parts
of a whole; is not possible to use the hasPart property for all parts of a
whole. This is for example the case for the preconditions, postconditions, as-
sumptions and effects of a capability: one axiom may be a pre-condition of
one capability and a post-condition of another capability. For this reason,
we define sub-properties of hasPart directly, namely hasPrecondition,
hasPostcondition, hasAssumption, and hasEffect.

RDF is not suitable for representing complex statements such as WSML
logical expressions. Therefore, such expressions are either represented as XML
literals using the WSML/XML format or represented as plain literals, using
the WSML surface syntax described in Section 4.4.4.

Listing 4.7 contains part of the Web service description of Listing 4.2 in
WSML/RDF format. The listing uses the Turtle syntax [15] for representing
RDF.

5 http://www.wsmo.org/TR/d32/v0.2/part.owl



4.6 Leveraging RDF and OWL Ontologies in WSML Web Services 59

@prefix : <http://www.wsmo.org/wsml/wsml−syntax#> .
@prefix part−whole: <http://www.wsmo.org/TR/d32/v0.2/part.owl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ex: <http://example.org/webservices/shopping/”> .

ex:AddItemsToCart rdf:type :WebService .
ex:AddItemsToCart :variant <http://www.wsmo.org/wsml/wsml−syntax/wsml−flight> .

ex:AddItemsToCart dc:title ”Add items to cart service ” .

ex:AddItemsToCart :importsOntology <http://example.org/ontologies/commerce/Commerce> .
ex:AddItemsToCart :importsOntology <http://example.org/ontologies/products/Products> .

ex:AddItemsToCart part−whole:hasPart directly :c .
:c rdf:type :Capability .
:c :sharedVariable ”?cartId” .
:c :sharedVariable ”?item” .
:c :sharedVariable ”?number” .

ex:AddItemsToCart part−whole:hasPart directly :i .
:i rdf:type :Interface .

:i part−whole:hasPart directly :ch .
:ch rdf:type :Choreography .

ex:AddItemsToCart part−whole:hasPart directly :n .
:n rdf:type :NonFunctionalProperty.

...

Listing 4.7. Example Web service description written in WSML/RDF

Since an RDF graph does not have a root element, the variant is an at-
tribute of the actual description (in this case a Web service description). As
can be seen from the example, annotations are written simply as RDF triples.
Three parts of the example Web service are shown in the listing, through
the use of part-whole:hasPart directly: the capability, an interface, and a non-
functional property. These elements did not have names in Listing 4.2; there-
fore, blank nodes are used to represent them. The interface ( :i) has a further
part, which is an unnamed choreography.

The WSML/RDF schema can be found at the following location: http://
www.wsmo.org/TR/d32/v0.2/wsml.rdf. For more details about WSML/RDF
we refer the reader to [45].

4.6 Leveraging RDF and OWL Ontologies in WSML
Web Services

In the previous section we described WSML/RDF, which enables the use of
RDF for the exchange, storage, and retrieval of WSML descriptions using
RDF-based tools. In particular, it enables the use of SPARQL [117], a query



60 4 The Basic WSML Language

language for RDF, for retrieving and querying WSML descriptions. In ad-
dition, WSML repositories may be implemented as SPARQL endpoints [41],
which may consequently be seen as Web-based interfaces to the repositories.

Another use of RDF in the context of WSML, and Semantic Web services
in general, is the use of RDF Schema [28, 73] ontologies to define the termi-
nology of goal and Web service descriptions. Such RDF Schema ontologies
can be used in addition to, or instead of, WSML ontologies.

Besides RDF Schema ontologies, it is also possible to use OWL DL [46, 77]
ontologies in combination with WSML. There are, however, certain restric-
tions on the use of RDFS and OWL DL in the various WSML variants.
Namely, RDFS ontologies cannot be used with the Core and DL variants of
WSML, and only a subset of OWL DL can be used with the Core, Flight, and
Rule variants of WSML. This is not necessarily a big problem. For example,
when importing an RDFS ontology in a WSML-Core Web service description,
the variant under consideration will automatically become WSML-Flight, and
there are known effective procedures for processing WSML-Flight descrip-
tions. However, when importing an OWL DL ontology in a WSML-Flight
description (or, likewise, when importing an RDFS ontology in a WSML-DL
description) the variant under consideration will become WSML-Full, and
there are no known procedures for processing WSML-Full descriptions. For
more details about the exact relationship between RDFS and OWL DL and
the various WSML variants, see the next chapter.

References to RDFS and OWL DL ontologies are written using the import-

sOntology directive, which is the same directive used for importing WSML
ontologies. It is up to the implementation to determine whether the refer-
enced ontology is a WSML, RDFS, or OWL DL ontology. One could imagine
that the IRI is dereferenced, the application initiates an HTTP request, and
the result will be either a WSML, RDFS, or OWL DL ontology. Now, a
WSML ontology can be written using one of three syntaxes: surface syntax,
WSML/XML, or WSML/RDF. Distinguishing the surface syntax and WSM-
L/XML from RDFS and OWL DL is straightforward. Distinguishing WSM-
L/RDF from RDFS is not completely straightforward. A possible guideline is
be the following: in case there is a triple of the form o rdf:type wsml:Ontology in
the graph, the ontology is most likely a WSML ontology (every WSML/RDF
ontology contains such a triple); otherwise, it is an RDFS ontology.

It is more tricky to distinguish RDFS and OWL DL ontologies, because
the syntax of both kinds of ontologies is based on RDF graphs. In fact, every
RDF graph that is an OWL DL ontology is an RDFS ontology (but not
necessarily the other way around). Therefore, an RDF graph that is an OWL
DL ontology can be interpreted either way. A guideline that could be used to
decide how to interpret the graph is to check whether any OWL vocabulary is
used in the graph. If this is the case (every OWL DL ontology contains OWL
vocabulary), and the RDF graph is an OWL DL ontology, then it should be
interpreted as such; otherwise it should be interpreted as an RDFS ontology.



4.6 Leveraging RDF and OWL Ontologies in WSML Web Services 61

Note that, if this guideline is strictly followed, OWL Full ontologies that are
not OWL DL ontologies are interpreted as RDFS ontologies.

Consider, for example, the FOAF ontology,6 which is an RDF graph. This
ontology does not contains a triple of the form o rdf:type wsml:Ontology, and
is thus not a WSML ontology. The ontology does contain OWL vocabulary,
and could thus be considered an OWL ontology. It turns out, however, that
the ontology is not an OWL DL ontology,7 but an OWL Full ontology (and
thus also an RDFS ontology). The application should consequently interpret
the RDF graph as an RDFS ontology.

In this chapter we have introduced various aspects of the Web Service Model-
ing Language. In the following three chapters we will describe the three core
parts of WSML – ontology, functional, and behavioral description – in more
detail.

6 The IRI identifying this ontology is http://xmlns.com/foaf/0.1/; the ontology
can be found at http://xmlns.com/foaf/spec/index.rdf.

7 This can be verified, for example, using the WonderWeb OWL Ontology Valida-
tor: http://www.mygrid.org.uk/OWL/Validator.



Part II

The WSML Description Components



5

Description of Ontologies

As we discussed in Chapter 4, ontologies form the basic vocabularies for goal
and Web service descriptions. More specifically, they define the terminologies
used in the functional and behavioral descriptions, as well as the nonfunc-
tional properties. This chapter is concerned with ontologies; the following two
chapters are concerned functional and behavioral Web service descriptions,
respectively.

WSML includes the WSML ontology language. In this chapter we define
this language and the interaction between this language and the RDF schema
[28] and OWL DL [46] ontology languages. We define the basic semantic no-
tions that are used for representing and reasoning with ontologies, but also
for representing and reasoning with functional and behavioral descriptions.
To that end, Chapters 6 and 7 extend the notions defined in this chapter to
suit the needs of the respective types of descriptions.

Recall from Section 4.3 the WSML language variants. They are based
on different knowledge representation paradigms. WSML-Rule is based on
the paradigm of logical rules with negation, specifically the Stable Model
Semantics [62], which is a popular semantics for declarative logic programs
with negation – another popular semantics for logic programs with negation
is the Well-Founded Semantics [61], which may be used as an approxima-
tion of the Stable Model Semantics for the task of query answering. WSML-
DL, in contrast, is based on the paradigm of Description Logics [11], which
are, for our purposes, subsets of classical first-order logic [25]. Consequently,
it is hard to define a single semantics for all WSML variants – a straight-
forward combination of positive function-free rules with a simple Descrip-
tion Logic already leads to undecidability of reasoning [93]. We note that
there are approaches to combining Description Logics with logical rules (e.g.,
[93, 48, 123, 125, 124, 126, 109, 108, 76, 51, 51, 50, 31]); these approaches,
however, are not as well investigated as the individual paradigms of Descrip-
tion Logics and Logic Programming, and they are generally computationally
harder to deal with. Therefore, the semantics of WSML-DL is defined in a
way that is close to the first-order version of the Description Logics [25] and



66 5 Description of Ontologies

base the semantics of WSML-Core, Flight, and Rule is based on the Stable
Model Semantics for logic programs [62].

We note that one of the approaches to combining rules and ontologies
(de Bruijn et al. [31]) was adapted to WSML, to provide a semantic framework
for all variants, including WSML-Full, by De Bruijn and Heymans [32, 33].
However, as the combination of rules and ontologies is still very much an open
research issue, this semantics for WSML-Full is not included in the language
recommendation.

The semantics of WSML ontologies, and their combination with RDFS and
OWL DL, is defined on the logical expression syntax. The semantics of the
conceptual syntax is defined through a mapping from the logical expression
syntax, which is described in Section 5.1. This mapping also shows the overlap
between conceptual and logical expression syntax, and how expressions in the
conceptual syntax can be accessed from the logical expression syntax.

WSML defines a model theory, which is shared between the variants; indi-
vidual variants impose additional restrictions to achieve correspondence with
the respective knowledge representation paradigms: Description Logics, in the
case of WSML-DL, and the Stable Model Semantics for logic programs, in the
case of WSML-Rule. The model theory is defined in Section 5.2. Section 5.3
describes the relationship between the variants. Specifically, it turns out that
all WSML- Core derivations are WSML-DL derivations.

Finally, the combination of WSML ontologies with RDFS and OWL DL is
defined in Section 5.4. The combinations are achieved by connecting the model
theories of RDFS, OWL DL, and WSML ontologies. Notions of satisfiability
and entailment for the different variants in combinations with RDFS and
OWL DL are defined. Combinations of WSML and RDFS/OWL ontologies
not only result from importing RDFS/OWL ontologies in WSML ontologies,
but also from importing RDFS/OWL ontologies in WSML Web service and
goal descriptions

Sections 5.2 and 5.4 are quite technical and require a basic understanding of
model theory in logics. Therefore, the reader may want to skip the sections
on first reading.

5.1 Relationship between the Conceptual and Logical
Expression Syntaxes

The WSML conceptual and logical expression syntaxes (see the Sections
4.4.2 and 4.4.4, respectively) have a certain overlap in their expressiveness.
It was mentioned in Section 4.4.4 that certain expressions in the concep-
tual syntax have a counterpart in the logical expression syntax (see Table
4.2 on page 47). Indeed, it is possible to write statements about classes, at-
tributes, relations, instances, and relation instances in the logical expression
syntax. It is in fact the case that most statements in the conceptual syntax



5.1 Relating Conceptual and Logical Syntaxes 67

of WSML ontologies can be expressed using the logical expression syntax.
Exceptions are ontology import and mediator usage statements and declara-
tions of WSML elements. For example, the ontology declaration
ontology ”http://example.org/ontologies/Media” cannot be expressed in the logi-
cal expression syntax. In fact, such declarations are not reflected in the WSML
semantics.

If an ontology has associated annotations, these are reflected in the se-
mantics and can be expressed in the logical expression syntax. Consider the
following description:

ontology ”http://example.org/ontologies/Media”
annotations

dc#title hasValue ”Media Ontology”
wsml#version hasValue ”Revision: 1.25”

endAnnotations
importsOntology { ”http://xmlns.com/foaf/0.1/”}

The ontology declaration and the import statement are not reflected in the
semantics and do not have an equivalent in the logical expression syntax; the
annotations are and do. In fact, ontology import statements play an important
role in the definition of the ontology semantics: all imported ontologies are
taken into account.

The following formulas are the logical expression-equivalent of the anno-
tations in the example. The annotations are in fact attribute values of the
ontology:

”http://example.org/ontologies/Media”[dc#title hasValue ”Media Ontology”] .
”http://example.org/ontologies/Media”[wsml#version hasValue ”Revision: 1.25”] .

This is not to say that ontology declarations and import statements should
not be used or are not important. The identifier of the ontology can be used
for other purposes, such as importing this ontology into other ontologies. The
ontology import statements themselves are not directly reflected in the se-
mantics of WSML, but they do play a role in the definition of entailment.
Namely, to decide whether a formula is entailed by an ontology, all imported
ontologies are taken into account in making this decision. This aspect is dis-
cussed in more detail in the next section. In fact, the union of the ontology
and all (recursively) imported WSML ontologies is considered when checking
entailment (or satisfiability, for that matter).

In the example above, the imported ontology (the FOAF ontology) is an
RDFS ontology. Since an RDFS ontology is not a WSML ontology, additional
considerations need to be taken into account when defining the semantics of
imports of RDFS ontologies. See Section 5.4 for an in-depth discussion.

The correspondence between the conceptual syntax and the logical expression
syntax, outlined in Table 4.2, on page 47, and formally defined in [29, Section
3.1.4], is used to define the semantics of WSML ontologies. This semantics
is directly defined for logical expressions; the semantics for the conceptual
syntax is obtained through its mapping to the logical expression syntax.



68 5 Description of Ontologies

Abstract Syntax Surface Syntax

tr(p(t1, . . . , tn)) p(t1, . . . , tn)

tr(�) true

tr(⊥) false

tr(t1 = t2) t1 = t2
tr(t1 : t2) t1 memberOf t2
tr(t1 :: t2) t1 subConceptOf t2

tr(t1[t2 hv t3]) t1[t2 hasValue t3]

tr(t1[t2 ot t3]) t1[t2 ofType t3]

tr(t1[t2 it t3]) t1[t2 impliesType t3]

tr(¬φ) neg tr(φ)

tr(not φ) naf tr(φ)

trrule((∀)b1 ∧ . . . ∧ bl∧
not c1 ∧ . . . ∧ not cm ⊃ ⊥),
with l +m ≥ 1

!- tr(b1) and . . . and tr(bl)
and naf tr(c1) and . . . and naf tr(cm)

trrule((∀)b1 ∧ . . . ∧ bl∧
not c1 ∧ . . . ∧ not cm ⊃ h),
with h �= ⊥

tr(h) :- tr(b1) and . . . and tr(bl)
and naf tr(c1) and . . . and naf tr(cm)

tr(φ ∧ ψ) tr(φ) and tr(ψ)

tr(φ ∨ ψ) tr(φ) or tr(ψ)

tr(φ ⊃ ψ) tr(φ) implies tr(ψ)

tr(φ ≡ ψ) tr(φ) equivalent tr(ψ)

tr(∀x(φ)) forall ?x(tr(φ))

tr(∃x(φ)) exists ?x(tr(φ))

Table 5.1. Mapping between abstract and surface syntax of logical expressions

In the remainder of this chapter we are primarily concerned with the log-
ical expression syntax. We will use the abstract syntax for logical expressions
as defined in [29, Section 1.22]. Table 5.1 shows the correspondence between
the abstract syntax and the surface syntax for logical expressions, through a
mapping tr that translates logical expressions from the abstract to the sur-
face syntax. The mapping trrule is used in the rule-based variants of WSML,
namely WSML-Flight and WSML-Rule.

The semantics of WSML ontologies is defined relative to sets of WSML formu-
las in abstract syntax form, called theories. Given a WSML ontology O, the
corresponding theory Φ is the set of WSML formulas in abstract syntax form
obtained by mapping the conceptual syntax to the logical expression syntax.

5.2 Semantics of WSML Ontologies

In this section we give an outline of the semantics of WSML ontologies. For
detailed definitions we refer the reader to [29, Section 3.1]. Instead, we focus
on the differences between the variants.



5.2 Semantics of WSML Ontologies 69

The semantics of WSML ontologies is based on a model theory, similar to
the standard model theory used for classical first-order predicate logic (see,
e.g., [59]), extended with certain features inspired by the model theory of F-
Logic [88]. This model theory defines a notion of interpretation, and defines
the conditions under which an interpretation I satisfies a formula or a set of
formulas (also called a theory), which are WSML logical expressions written
in abstract syntax form (cf. Table 5.1; [29]). An interpretation that satisfies
a formula or theory is called a model. Finally, the most important notion for
reasoning (deduction) is that of entailment, which corresponds to derivation
(or logical deduction). A set of formulas Φ entails a formula φ if every model
of Φ is a model of φ.

Recall that different WSML variants are based on different knowledge rep-
resentation paradigms. It turns out that, because of the differences between
the paradigms, it is not known how to use the same model theory for all vari-
ants. However, there is a basic notion of a WSML interpretation and there is a
basic notion of a model. Different variants extend these definitions in different
ways. WSML-DL imposes certain additional restrictions on interpretations,
such as a separation of the interpretation of concept, instance, and attribute
identifiers, but uses the basic notion of a model. WSML-Core, Flight, and Rule
use the basic notion of WSML interpretation, but impose certain additional
restrictions on conditions under which an interpretation is a model; models
need to be minimal or stable. The latter is necessary for the nonmonotonic
interpretation of the default negation symbol not .

The model theory of WSML-DL has been constructed in such a way that
it is close to the usual model theory of the first-order variant [25] of the
Description Logic SHIQ(D) [78]. See, e.g., [44, Section 8.2] for a first-order
style definition of the SHIQ(D) semantics.

WSML-Core, Flight, and Rule share the same model theory, which has
been constructed in such a way that there is a correspondence with the Stable
Model Semantics of normal logic programs [62], i.e., logic programs with no
disjunction in the head and with negation in the body of the rules. Note that
WSML-Flight theories are locally stratified, and that for locally stratified logic
programs the Stable Model Semantics corresponds with the other prominent
semantics for logic programs with negation, such as the Well-Founded Seman-
tics [61] and the perfect model semantics [118]. Finally, WSML-Core theories
do not contain negation; for negation-free logic programs the Stable Model
Semantics corresponds with the minimal Herbrand model semantics [96].

For more details of the correspondence between WSML-DL and SHIQ(D)
and between WSML-Core, Flight, and Rule and the Stable Model Semantics
for normal logic programs, and how these formalisms can be used for reasoning
with WSML, see Chapter 8.

In the remainder of this section we first describe the basic WSML model
theory. We proceed with a description of the extension to the WSML-DL
model theory and the notion of entailment in WSML-DL. We then describe
the notions of minimal Herbrand model and stable model for WSML-Core,



70 5 Description of Ontologies

Flight, and Rule, and define the notion of entailment for these variants. We
conclude this section with a discussion of the differences between the variants
and language layering in WSML, most notably the layering between the Core
and DL variants.

5.2.1 The Basic WSML Model Theory

The basic WSML model theory defines a notion of interpretation and a notion
of satisfaction, which are conditions under which a WSML interpretation is a
model of a formula, or a set of formulas.

As usual, an interpretation has an abstract domain of interpretation, which
is an abstract set of objects used for the interpretation of IRIs. Additionally,
an interpretation has a concrete domain, which is used for the interpretation
of data values. Different interpretations may have different abstract domains
and different mappings of IRIs to this abstract domain. The concrete domains
of all interpretations under consideration must be the same, as must be the
mapping of data values to elements of this domain. This means that any
data value is mapped to the same element (value) in the concrete domain,
in every interpretation under consideration. For example, an IRI ex#abc may
be mapped to some abstract object a in one interpretation and to b in some
other interpretation, but the integer 1 must be mapped to the number 1 in
every interpretation.

The concrete domain to be considered is given by a concrete domain
scheme, which defines a concrete domain, a mapping of data values to ele-
ments of this domain, and a number of built-in functions and predicates (e.g.,
numeric addition, string concatenation, and numeric comparison). Since the
list of datatypes that may be used with WSML is not fixed, there is not
a single concrete domain scheme for WSML. However, WSML does impose
certain requirements on so-called WSML-compliant domain schemes, namely,
the scheme must include the XML schema datatypes string, integer, and deci-
mal [20], the RDF datatype XMLLiteral, and a number of built-in predicates
defined for WSML (see [68, Appendix B.2]).

We now proceed to define the notions of interpretation, satisfaction, and
concrete domain scheme.

WSML Interpretations

An interpretation is a tuple I = 〈U,≺U ,∈U , U
D, IF , IP , I hv , I it , I ot 〉, where

• U is a nonempty countable set, called the abstract domain,
• UD is a non-empty set that is disjoint from U , called the concrete domain,
• ≺U is an irreflexive partial order over U ∪ UD, representing the strict

sub-concept relation,
• ∈U is a binary relation over U ∪UD, representing the concept membership

relation,



5.2 Semantics of WSML Ontologies 71

• IF is a mapping from constant and function identifiers to elements of U
and functions over (U ∪ UD),

• IP is a mapping from relation identifiers to relations over (U ∪ UD), and
• I hv , I it , and I ot are mappings from U ∪ UD to binary relations over

U ∪ UD, representing the attribute value (hasValue) and the two kinds of
attributes typing relations (impliesType and ofType): I hv , I it , I ot : U ∪
UD → 2(U∪UD)×(U∪UD).

Additionally, the following two conditions ((5.1) and (5.2)) must hold on every
WSML interpretation. These conditions that WSML interpretations obey the
semantics of the sub-concept and impliesType relations. The first condition
requires that if the sub-concept relation holds between two elements, the set
of instances of the sub-concept is a subset of the set of instances of the super-
concept.
We write a �U b when a ≺U b or a = b, for any two a, b ∈ U ∪ UD. For every
interpretation must hold that

if a ∈U b and b �U c then a ∈U c (5.1)

The second condition requires that if the impliesType typing relation holds
between an attribute p and a concept d, for a concept c, then it must be the
case that for every instance a of c, whenever the attribute p has a value b,
then b must be an instance of d:

if 〈c, d〉 ∈ I it (p), then for every a ∈U c holds that

for every b ∈ U ∪ UD such that 〈a, b〉 ∈ I hv (p), b ∈U d (5.2)

From condition 5.1 follows that, if b �U c, then the set of instances of b is a
subset of the set of instances of c, i.e., {k | k ∈U b, k ∈ U ∪ UD} ⊆ {k | k ∈U

c, k ∈ U ∪ UD}. We call the set {k | k ∈U b, k ∈ U ∪ UD} the class extension
of b, and denote the class extension of an element b with bcext. Thus,

if b �U c, then bcext is a subset of ccext (5.3)

However, the converse of (5.3) is not always true: if bcext is a subset of ccext,
then it is not necessarily the case that b �U c.

Note that a consequence is that it is not possible to derive a subconcept
statement c ::d from a formula ∀x(x : c ⊃ x :d). Note that this kind of deriva-
tion is common in Description Logics; in fact, in DLs there is no distinction
between subconcept statements and formulas of the mentioned form; both are
written as c � d. Consequently, WSML-DL requires an additional conditions
that ensures the converse of 5.3 is be true in every interpretation; see the
following subsection.

Before proceeding with the definitions of the interpretation of identifiers, we
must make a note about anonymous identifiers. In the following we assume
that



72 5 Description of Ontologies

• each unnumbered anonymous identifier # is replaced with a globally
unique new IRI and

• for every formula φ and every numbered anonymous identifier #n occur-
ring in φ, each occurrence of #n is replaced with the same new globally
unique IRI.

We now proceed with the definition of the interpretation functions for identi-
fiers, namely IF and IP . Note that all identifiers (after replacement of anony-
mous identifiers) are IRIs, with the exception of elementary data values.

An instance identifier is interpreted as an element of the abstract domain
U : IF (f) = u ∈ U . A function identifier is interpreted as a function over
the domain U , for every arity i ≥ 1: IF (f)i : U i → U . An n-ary datatype
wrapper or elementary data value (elementary data values have arity 0) f
is interpreted as a function over the domain UD: IF (f) : (UD)n → UD. A
relation identifier p is interpreted as a relation over the domain U ∪ UD for
every arity i ≥ 0: IP (p)i ⊆ (U ∪ UD)i. An n-ary built-in predicate identifier
p is interpreted as a relation over the domain UD: IP (p) ⊆ (UD)n.

After defining the interpretation of constant, predicate, and function sym-
bols, we can now define the interpretation of terms. To do that, we first need
to define the notion of variable assignment. We need to distinguish between
abstract and concrete assignments.

A variable assignment B assigns each variable x to an individual xB ∈
U ∪ UD. A variable assignment B′ is an abstract (resp., concrete) x-variant
of B if xB′ ∈ U ∪ UD (resp., xB′ ∈ UD) and yB′

= yB for every y �= x.
We are now ready to define interpretation of terms.

The interpretation of a term t in some interpretation I with respect to some
variable assignment B, written tI,B, is defined as: tI,B = tB if t ∈ V , and
tI,B = IF (f)(tI,B

1 , . . . , tI,B
n ) if t is of the form f(t1, . . . , tn), with n ≥ 0.

Satisfaction

Satisfaction is a relation between interpretations and formulas. Whenever a
pair of an interpretation I and a formula φ are in the satisfaction relation,
the interpretation I satisfies the formula φ, denoted I |= φ. If I |= φ we say
that I is a model of φ; in other words, φ is true in I. If I and φ are not in
the satisfaction relation, i.e., I is not a model of φ, we write I �|= φ.

To define satisfaction of formulas with free variables, we formally define
the satisfaction relation relative to a given variable assignment B. We first
define satisfaction of atomic formulas and molecules and subsequently extend
it to arbitrary formulas.

Satisfaction of atomic formulas and molecules φ in an interpretation I, given
a variable assignment B, denoted (I, B) |= φ, is defined as:

• (I, B) |= �,
• (I, B) �|= ⊥,



5.2 Semantics of WSML Ontologies 73

• (I, B) |= p(t1, . . . , tn) iff (tI,B
1 , . . . , tI,B

n ) ∈ IP (p),
• (I, B) |= t1 : t2 iff tI,B

1 ∈U tI,B
2 ,

• (I, B) |= t1 :: t2 iff tI,B
1 �U tI,B

2 ,
• (I, B) |= t1[t2 hv t3] iff 〈tI,B

1 , tI,B
3 〉 ∈ I hv (tI,B

2 ),
• (I, B) |= t1[t2 it t3] iff 〈tI,B

1 , tI,B
3 〉 ∈ I it (t

I,B
2 ),

• (I, B) |= t1[t2 ot t3] iff 〈tI,B
1 , tI,B

3 〉 ∈ I ot (t
I,B
2 ), and

• (I, B) |= t1 = t2 iff tI,B
1 = tI,B

2 .

This extends to arbitrary formulas as follows:

• (I, B) |= φ1 ∧ φ2 iff (I, B) |= φ1 and (I, B) |= φ2,
• (I, B) |= φ1 ∨ φ2 iff (I, B) |= φ1 or (I, B) |= φ2,
• (I, B) |= φ1 ⊃ φ2 iff (I, B) �|= φ1 or (I, B) |= φ2,
• (I, B) |= φ1 ≡ φ2 iff (I, B) |= φ1 ⊃ φ2 and (I, B) |= φ2 ⊃ φ1,
• (I, B) |= ¬φ1 iff (I, B) �|= φ1,
• (I, B) |= not φ1 iff (I, B) �|= φ1,
• (I, B) |= ∀ax(φ1) iff for every B′

a, which is an abstract x-variant of B,
(I, B′

a) |= φ1,
• (I, B) |= ∃ax(φ1) iff for some B′

a, which is an abstract x-variant of B,
(I, B′

a) |= φ1,
• (I, B) |= ∀cx(φ1) iff for every B′

c, which is a concrete x-variant of B,
(I, B′

c) |= φ1,
• (I, B) |= ∃cx (φ1) iff for some B′

c, which is a concrete x-variant of B,
(I, B′

c) |= φ1.

If a variable x is quantified using a concrete quantifier (∀c, ∃c), we call x a
concrete variable; otherwise, we call x an abstract variable.

An interpretation I satisfies a formula φ, written I |= φ if (I, B) |= φ for
every variable assignment B.

Notice that we did not say anything about the concrete domain or the
interpretation of the concrete domain functions and predicates. We now pro-
ceed to define the notion of concrete domain schemes and the notion of models
relative to concrete domain schemes.

Concrete Domain Schemes

A concrete domain scheme consists of a concrete domain, which is a set of
values (e.g., integers and strings), a set of concrete predicate symbols (e.g.,
numeric comparison such as greater-than), a set of data values identifiers (e.g.,
strings and integers), a set of datatype identifiers, a set of concrete function
symbols, and an interpretation function that maps concrete function symbols
to functions and concrete predicate symbols to relations.

We note that, generally, WSML uses concrete predicate symbols for built-
in functions. For example, numeric addition x+y = z correspond to an atomic
formula with a concrete predicate symbol wsml#numericAdd(z, x, y). Concrete



74 5 Description of Ontologies

function symbols are used as constructors of data values (they are datatype
wrappers).
Formally, a concrete domain scheme S is a tuple S = 〈US,FS,DS,PS, ·S〉,
where

• US is a non-empty set of concrete values,
• FS and PS are disjoint sets of concrete function and predicate symbols,

which are IRIs, each with an associated nonnegative arity n,
• DS ⊆ FS is a set of datatype IRIs, and
• ·S is an interpretation function which assigns a function fS : (US)n → US

to every f ∈ FS, and a relation pS ⊆ (US)n to every p ∈ PS.

As an abuse of notation, for every datatype IRI d ∈ DS, with dS we denote
both the function assigned to d by ·S and the range of this function. In the
latter case, we also speak about dS as the domain of the datatype identified
by d. In other words, we use the same identifier d to denote both the datatype
and the datatype wrapper.

Intuitively, a datatype function dS defines a datatype as a set of values
that are constructed from other values. For example, a date 2008-02-13 is
constructed from the integers 2008, 2, and 13 using the function xsd#date:
xsd#date(2008, 2, 13). In addition, xsd#date denote the range of the constructor
function xsd#date, which is the set of all dates, i.e., the value space of the
datatype xsd#date.

We illustrate the concept of concrete domain schemes through the defini-
tion of a scheme for integers and strings.

Example 5.1. We define S = 〈US,FS,DS,PS, ·S〉 as follows: US is the
union of the sets of integer numbers and finite-length sequences of Unicode
characters. FS is the union of the set of finite-length sequences of decimal dig-
its, optionally with a leading minus (-), and the set of finite-length sequences
of Unicode characters, delimited with " (for simplicity, we assume that the
character ‘"’ does not occur in such strings), all with arity 0. PS consists of
unary predicate symbols xsd#integer and xsd#string, and the binary predicate
symbol wsml#numeric-equals. The interpretation function ·S interprets (signed)
sequences of decimal digits and "-delimited sequences of characters as integers
and strings, respectively, in the natural way; ·S interprets the unary predi-
cate symbols xsd#integer and xsd#string as the sets of integers and strings,
respectively; finally, ·S interprets wsml#numeric-equals as identity over the set
of integers.

WSML Compliance

It is not allowed to use just any kind of concrete domain scheme with WSML.
The scheme must at least include the datatypes and built-in predicates re-
quired by WSML. Additionally, if any XML schema datatype is used, the
scheme must conform to the definition of the datatype in the XML schema
datatypes specification [20].



5.2 Semantics of WSML Ontologies 75

Formally, a concrete domain scheme S = 〈US,FS,DS,PS, ·S〉 is WSML-
compliant if the following conditions are met. We first define the condition
which make sure all XML schema datatypes in S conform with the specifica-
tion. The IRI of an XML schema datatype is obtained by concatenating XML
schema namespace and the name of the datatype. For example, the IRI of the
datatype string is http://www.w3.org/2001/XMLSchema#string.

• if d ∈ DS is the IRI of an XML schema datatype dt, then the range of dS

corresponds to the value space of dt and the domain of dS corresponds to
the definition in [68, Table B.1], if it exists; otherwise it is the set of strings
comprising the lexical space of dt, and the mapping dS corresponds to the
lexical-to-value mapping for dt defined in [20].

The following conditions ensure that the required data types, namely the
XML schema datatypes string, integer, and decimal and the RDF datatype
XMLLiteral, are included in the scheme.

• the IRIs xsd#string, xsd#integer, and xsd#decimal are included in DS, and
for any string, integer, or decimal v in FS, vS is the value obtained by
applying the corresponding lexical to value mapping, as defined in [20], to
v,

• the IRI rdf#XMLLiteral is included in DS, every string x representing valid
XML content [90, Section 1] is included in FS with arity 0, and for any
string x representing valid XML content, rdf#XMLLiteralS(x) is the XML
value of x according to [90, Section 5.1], and

• the built-ins defined for WSML in Appendix C.2 of [68] are included in
PS and are interpreted to the definition in Appendix C.2 of [68].

In the remainder, we require that every domain scheme under consideration
is WSML-compliant.

Conformance of Interpretations

The intention of concrete values and concrete predicate and function symbols
is that they are interpreted in the same way in all interpretations under consid-
eration. The way this is achieved in WSML is by associating a single concrete
domain scheme with all considered interpretations. A concrete domain scheme
is associated with an interpretation if the interpretation conforms with the
scheme, is defined below.

An interpretation I = 〈U,≺U ,∈U , U
D, IF , IP , I hv , I it , I ot 〉 conforms to

a concrete domain scheme S if the following conditions are satisfied.

• UD = US,
• IF (f) = fS for every concrete n-ary function symbol f ∈ FS, and
• IP (p) = pS for every concrete n-ary predicate symbol p ∈ PS.

We note here that a datatype identifier is also a concept identifier, and the
set of instances of this concept is the set of values of the datatype. This is
guaranteed by the following condition.



76 5 Description of Ontologies

• for every datatype identifier d ∈ DS holds that u ∈ dS iff u ∈U IF (d), for
every u ∈ UD.

Models

Using the above notion of conformance we can now define the notion of a
model relative to a concrete domain scheme.

Given a concrete domain scheme S, an interpretation I is a S-model of
a formula φ if I conforms to S and I |= φ. A formula φ is S-satisfiable if it
has a S-model; φ is S-valid if every interpretation that conforms to S is a
S-model of φ.

Likewise, an interpretation I is a S-model of a theory Φ if I is a S-model
of every formula φ ∈ Φ and Φ is S-satisfiable if it has a S-model.

We have defined the basic notion of models in WSML. The subsequent sections
extend this notion in two different ways, for the DL and Core, Flight, and
Rules variants, respectively. These extended notions will be used to define the
semantic notions for the respective variants.

5.2.2 WSML-DL Extensions

WSML-DL makes a syntactic separation between concepts, attributes, and
instance identifiers, and the places they may occur (e.g., a concept identifier
may only occur in a concept positions). Additionally, the places where ab-
stract and concrete terms and variables may occur are distinct. In order to
enable DL-based reasoning it is necessary to reflect these distinctions in the
semantics as well. Specifically, WSML-DL imposes additional conditions on
interpretations.

We first need to define the notions of concept, attribute, and instance
position. We say that a term occurs in a concept position if occurs as the
third term in a itor otmolecule, as the second term in a : -molecule, or the
term occurs in a :: -molecule; it occurs in an attribute position if it occurs
as the second term in a hv , itor otmolecule; otherwise, the term occurs in
an instance position. That is, in the molecules and atoms a : c, c :: c, a[phva],
a[p it c], a[pot c], q(a, . . . , a), and a = a the term c occurs in concept, p occurs
in relation, and a occurs in instance positions.

WSML-DL Semantic conditions

Observe that the syntax of WSML-DL makes a distinction between identi-
fiers used in concept, attribute and instance positions. In fact, the sets of
instances, concept, attribute, and annotation property identifiers are mutu-
ally disjoint. WSML interpretations, defined in the previous subsection, do
not distinguish between the interpretations of these different identifiers; they



5.2 Semantics of WSML Ontologies 77

are all interpreted in the same domain. This separation is reflected in the
conditions on WSML-DL interpretations, as well as conditions on WSML-DL
variable assignments.

An interpretation I = 〈U,≺U ,∈U , U
D, IF , IP , I hv , I it , I ot 〉 is a WSML-

DL interpretation if the following conditions hold. Firstly, we require a
separation between the interpretations of instance, concepts, and attributes
identifiers.

• U is partitioned into three sub-domains U i, Ua, and U c, such that U i is
not empty,

• IF maps instance identifiers to elements in U i,
• IF maps concept identifiers to elements in U c, and
• IF maps attribute and annotation property identifiers to elements in Ua.

Then, we need to ensure that the elements of the interpretation that are used
for the interpretation of subclass, class instance, and attribute statements are
defined only on the appropriate sub-domains.

• the partial order ≺U is only defined on elements in U c,
• ∈U is a relation between U i and U c, and
• I hv (u) = I it (u) = I ot (u) = ∅ for any u ∈ U c ∪ U i.

Finally, WSML-DL requires an extensional interpretation of the subclass and
implies-type constructs, i.e., the converse of the conditions (5.1) and (5.2)
must hold:

for any two elements a, b ∈ U c holds that
whenever acext ⊆ bcext, a �U b (5.4)

for any three elements c, p, d ∈ U it is the case that
whenever for every a, b ∈ U such that a ∈U c and 〈a, b〉 ∈ I hv (p)

it holds that b ∈U d, 〈c, d〉 ∈ I it (p) (5.5)

WSML-DL Satisfaction

The conditions on WSML-DL interpretations are not yet enough to define
satisfaction for WSML-DL. Namely, it is necessary to ensure that variables
are only mapped to the subdomain U i and the concrete domain UD, and
abstract variables must only be mapped to U i.

Formally, given a variable assignment B, a variable assignment B′ is an
abstract DL-x-variant of B if B′ is an abstract x-variant of B and xB′ ∈ U i.

DL satisfaction, denoted by the symbol |=DL, is obtained from satisfaction
as described in the previous section by modifying the definition of satisfaction
of abstractly quantified formulas in the following way:



78 5 Description of Ontologies

• (I, B) |=DL ∀ax(φ1) iff for every variable assignment B′
a, which is an

abstract DL-x-variant of B whose range is U i, (I, B′
a) |=DL φ1 and

• (I, B) |=DL ∃ax(φ1) iff for some variable assignment B′
a, which is an ab-

stract DL-x-variant of B whose range is U i, (I, B′
a) |= φ1.

As can be seen from the definition, the difference with the definition of satis-
faction given earlier is the following: abstractly quantified variables are only
assigned to the individual domain U i, and not to the concrete domain UD,
the concept domain U c, or the attribute domain Ua. The notions of a model,
satisfiability, and validity in WSML-DL are defined analogously to the corre-
sponding notions in WSML.

Given a concrete domain scheme S, an interpretation I is a WSML-DL
S-model of a WSML-DL formula φ if I is a WSML-DL interpretation, I
conforms to S, and I |=DL φ. A formula φ is WSML-DL S-satisfiable if
it has a WSML-DL S-model; φ is WSML-DL S-valid if every WSML-DL
interpretation which conforms to S is a model of φ.

Likewise, an interpretation I is a S-model of a theory Φ if I is a S-model
of every formula φ ∈ Φ and Φ is S-satisfiable if it has a S-model.

Semantics of WSML-DL Ontologies

We are now ready to define the semantics of WSML-DL ontologies. The main
notions we are interested in are (1) satisfiability of a concept relative to an
ontology, (2) satisfiability of an ontology, and (3) entailment between ontolo-
gies.

The definitions of these notions follow straightforwardly from the above
definitions with the complication that we need to take imported ontologies
into account. We first define the notion of a model of a WSML-DL ontology.
Given a concrete domain scheme S, an interpretation I is a WSML-DL S-
model of a WSML-DL ontology O if

1. I is a WSML-DL S-model of a theory Φ which corresponds to O and
2. I is a WSML-DL S-model of every ontology imported by O.

Notice that we require every model of an ontology to be also a model of every
imported ontology. Consequently, the interpretation must also be a model of
every ontology imported by any imported ontology, etc. So, if an ontology O1

imports an ontology O2 and O2 imports an ontology O3, then every model
of O1 must be a model of O2, by condition 2 above. But, every model of O2

must also be a model of O3, again by condition 2 above. Consequently, every
model of O1 must be a model of O3.

We now proceed with definitions of the WSML-DL semantic notions, which are
in line with the semantic notions typically used in Description Logic reasoning
[11].



5.2 Semantics of WSML Ontologies 79

Concept Satisfiability Given a concrete domain scheme S, let c be a
concept identifier. We say that c is WSML-DL S-
satisfiable with respect to a WSML-DL ontology O
if there is a WSML-DL S-model I of O such that
IF (c)cext �= ∅, i.e., the concept extension of c is not
empty.

Ontology Satisfiability Given a concrete domain scheme S, a WSML-
DL ontology O is WSML-DL S-satisfiable if O has
a WSML-DL S-model.

Formula Entailment Given a concrete domain scheme S, a WSML-DL on-
tology O WSML-DL S-entails a formula φ if every
WSML-DL S-model of O is a WSML-DL S-model of
φ.

Ontology Entailment Given a concrete domain scheme S, a WSML-DL
ontology O1 WSML-DL S-entails a WSML-DL ontol-
ogyO2 if every WSML-DL S-model of O1 is a WSML-
DL S-model of O2.

See Chapter 8 for a description of how Description Logic reasoning tech-
niques can be used for processing WSML-DL descriptions.

5.2.3 Stable Models for Core, Flight, and Rule

WSML-Flight and Rule allow the use of default negation (not in the abstract
syntax; naf in the surface syntax) in rule bodies: by default a literal not a
is assumed to be true. Furthermore, the ofType attribute typing construct
requires that the types of attribute values are known; by default it is assumed
that the type of an attribute value does not conform with the constraint.

Since in both cases there is a notion of defaults that may be overwritten,
the language is nonmonotonic, i.e., adding rules or facts to the ontology may
invalidate entailments. Notice that classical negation (¬; neg) may not be used
in WSML-Core, Flight, and Rule.

We illustrate this nonmonotonicity with an example.

Example 5.2. Consider the following small ontology:

GoldCustomer ::Customer
x :GoldCustomer ⊃ x[hasDiscounthv15]

x :Customer ∧ not x :GoldCustomer ⊃ x[hasDiscounthv5]
john : Customer

which says that every gold customer is a customer, gold customers get a
discount of 15 (percent), customers that are not gold customers get a discount
of 5 (percent), and John is a customer. Now, because John is a customer and
it is not known that he is a gold customer, he has a discount of 5. If we add the



80 5 Description of Ontologies

fact john :GoldCustomer to the ontology, John will no longer get a discount
of 5%, because the corresponding (third) rule does not become active, but he
will get a discount of 5%, because the second rule becomes active. Notice that
if we were to remove the condition not x :GoldCustomer from the third rule,
then John would have two discounts: 5% and 15%.
We now add the following axioms to the ontology:

Customer[hasPurchased otProduct]
john[hasPurchased hvmyBook]

which say that every purchase of every customer must be known to be a
product, and John has purchased the book myBook. Since it is not known
that myBook is a product, the ontology is inconsistent. If we add the fact
myBook :Product to the ontology, it will no longer be inconsistent.

The model theory described in Section 5.2.1 is not adequate to capture such
nonmonotonic behavior, because adding formulas to an ontology will only
decrease the number of models, and hence increase the number of entailments.
Therefore, we need to go beyond this model theory to define an adequate
semantics for default negation.

A solution to this problem is to consider only one or a few preferred models.
The question is then: which models should we select as the preferred models,
so that negation indeed behaves as default negation?

There is a nonmonotonic logic, called default logic [120], that defines a
notion of defaults in a logical setting. This logic is, however, too broad for
our purposes, and does not define a notion of preferred models, but rather a
notion of extensions, which are sets of formulas. In contrast, the Stable Model
Semantics for normal logic programs with negation [62] defines a notion of
preferred (stable) model that essentially corresponds to the notion of extension
in default logic [99]. So, since the Stable Model Semantics defines a notion of
preferred model that exactly captures the notion of default negation, we have
chosen to use it as the underlying semantics for WSML-Flight and Rule. We
also use it as the underlying semantics for WSML-Core, but since WSML-
Core does not allow the use of negation, the semantics corresponds to the
usual minimal Herbrand model semantics for logic programs [96].

In addition, since all WSML-Flight rules must be locally stratified, the
semantics corresponds with the perfect model semantics [118] and the Well-
Founded Semantics [61] for WSML-Flight ontologies. Finally, it is the case
that every consequence under the Well-Founded Semantics is a consequence
under the Stable Model Semantics [61]; we explicitly allow implementations
to use the Well-Founded Semantics as an approximation to the Stable Model
Semantics of WSML-Rule for the task of query answering.

We first define the notion of a Herbrand model, in which each ground term is
interpreted as itself, and the notion of a minimal Herbrand model. We then
define the notion of a stable model, which is based on the reduct (i.e., removal



5.2 Semantics of WSML Ontologies 81

of negation) of the grounding of a set of WSML rules. Based on the notion of
stable models we define satisfiability and entailment for WSML-Core, Flight,
and Rule ontologies.

Herbrand Models

We first define a specific kind of WSML interpretations and models, namely
Herbrand interpretations and models. In these interpretations, the domain of
interpretation consists of all ground terms and every ground term is inter-
preted as itself.

We define Herbrand interpretations relative to a concrete domain scheme
S = 〈US,FS,DS,PS, ·S〉. With D we denote the set of all data values in
S: D =

⋃{dS | d ∈ DS}.
When defining the Herbrand universe we consider symbols from the lan-

guage for defining abstract terms, but concrete data values are represented by
themselves. This is necessary because a concrete data value may have several
syntactical representations (e.g., 1.0=1).

The Herbrand S-universe of a theory Φ is the union of the set of all ground
terms that can be formed from the constant and function symbols in Φ that are
not data values and the set of all values tS in D whose lexical representation
t occurs in Φ.

A Herbrand S-interpretation I = 〈U,≺U ,∈U , U
D, IF , IP , I hv , I it , I ot 〉 is

a S-interpretation such that

• U is the Herbrand S-universe of Φ and
• for every ground term t that is not a data value, tI = t′, where t′ is

obtained from t by replacing every data value d in t with dS.

We can view a Herbrand S-interpretation I as a set of ground atomic for-
mulas, namely that set of ground atomic formulas that is satisfied by I:
{α | I |= α}. In the following, we will use the symbol I to denote both
the interpretation and the corresponding set of ground atomic formulas.

We can now define the notion of a minimal Herbrand S-model. Given a con-
crete domain scheme S, a Herbrand S-interpretation I is a minimal Herbrand
S-model of a theory Φ if I |= Φ and for every Herbrand S-interpretation I ′

holds that if I ′ |= Φ, then I ⊆ I′.

Stable Models

It turns out that a WSML-Core or Flight theory has at most one Herbrand
model, which can be computed using a fixpoint operator in the usual way
[96]. However, there is no known computational procedure for finding minimal
Herbrand models in case there are multiple models due to the presence of
negation in rules. The Stable Model Semantics provides a procedure for finding
minimal models, but not every minimal model is a stable model. However, as



82 5 Description of Ontologies

we have mentioned before, stable models correspond to extensions in default
logic, and therefore adequately capture our desired notion of default negation.

The computation of a stable model roughly works as follows:

1. Guess a S-model I of Φ,
2. create the reduct of the grounding of Φ, which “evaluates” the negation

in Φ according to I, and
3. if I is the minimal Herbrand S-model of Φ, then it is a stable model.

The grounding of a set of WSML formulas Φ, denoted gr(Φ), is the union of
all possible ground instantiations of Φ, obtained by

• replacing each abstract (resp., concrete) variable in a formula φ ∈ Φ with
a ground (resp., ground concrete) term in the Herbrand S-universe and

• replacing each data value d in φ with the corresponding concrete data
value dS,

for each formula φ ∈ Φ.
Following [63], the reduct of Φ with respect to a S-interpretation I, de-

noted ΦI , is obtained from gr(Φ) by

• deleting each formula r with a not c in the antecedent such that c ∈ I and
• deleting not c from the antecedent of every remaining formula r.

We are now ready to define the notion of stable S-model.
Given a concrete domain scheme S, a Herbrand S-interpretation I is a stable
S-model of a WSML-Core, Flight, or Rule theory Φ if I is a minimal Herbrand
S-model of ΦI .

Example 5.3. Consider the following ground WSML-Rule theory:

not p(1.0) ⊃ p(2.0)
not p(2) ⊃ p(1)
p(1.00) ⊃ p(3.0)
p(2.00) ⊃ p(3)

Given any WSML-compliant domain scheme S, the theory has two stable
S-models:

I1 = {p(1), p(3)}
I2 = {p(2), p(3)}

Observe that the decimals and integer 1.0, 1.00, 1 are all syntactical represen-
tations of the integer value 1. Likewise for 2.0, 2.00, 2 and 3.0, 3. The stable
models only contain the values corresponding to be syntactical representa-
tions.

We leave it as an exercise to the reader to verify that I1 and I2 are indeed
the stable models of the theory.



5.3 Layering of WSML Variants 83

Semantics of WSML-Core, Flight, and Rule Ontologies

We are now ready to define the semantics of WSML-Core, Flight, and Rule
ontologies. We are interested in (1) satisfiability of an ontology and (2) en-
tailment of ground formulas.

To deal with imported ontologies we generally followed the same scheme
as with WSML-DL.
Note that we have not addressed the semantics of ot -molecules (ofType) so
far. We address the semantics of such molecules in the definition of stable
models of ontologies. Specifically, stable models may not satisfy the following
formula:

∃c, p, d, a, b(c[potd] ∧ a : c ∧ a[phv b] ∧ not b :d) (5.6)

which is true in a model if there is a concept c with an attribute p, which is
ofType d, there is an instance a of c that has a value b for the attribute p and
it is not known that b is an instance of d. In other words, if (5.6) is satisfied,
some ofType constraint is violated.

Every WSML ontology O that imports a set of ontologies {O1, . . . , On} has
an imports-closed corresponding theory Φ∪, which is defined as follows: Φ∪ =
Φ∪Φ1 ∪ · · · ∪Φn, where Φ is the theory that corresponds to O and Φ1, . . . , Φn

are the imports-closed theories of the ontologies O1, . . . , On, respectively.
Given a concrete domain scheme S, an interpretation I is a stable S-model

of a WSML-Core, Flight, or Rule ontology O if

1. I is a stable S-model of the imports-closed theory Φ corresponding to O
and

2. I does not satisfy (5.6).

Satisfiability Given a concrete domain scheme S, a WSML-Core, Flight, or
Rule ontology O is S-satisfiable if O has a stable S-model.

Entailment Given a concrete domain scheme S, a satisfiable WSML-Core,
Flight, or Rule ontology O S-entails a ground atomic formula
α if for every stable S-model I of O holds that I |= α.

Example 5.4. Consider the theory in Example 5.3. Since the theory as a stable
model, it is satisfiable. Additionally, the theory entails p(3), p(3.0), p(3.00),
p(3.000), etc.; recall that 3, 3.0, 3.00, 3.000, . . . are all syntactical representa-
tions of the integer 3. The theory does not entail p(1) or p(2), since these are
both not satisfied in every stable model of the theory.

See Chapter 8 for a description of how reasoning techniques for logic pro-
grams can be used for processing WSML-Core, Flight, and Rule descriptions.

5.3 Layering of WSML Variants

Recall Figure 4.3 on page 36, which depicts WSML language layering. When
introducing language layering in Section 4.3 we did not explain exactly what



84 5 Description of Ontologies

the arrows in the figure mean. We have also seen in the definitions of the
semantics of WSML ontologies above that the semantics of variants differs.
Most notably, Figure 4.3 suggests that WSML-DL should be layered on top
of Core. However, the definition of the notions of models and entailment of
the respective variants is different. Since we did not discuss the semantics of
WSML-Full, we are not concerned with the layering between the DL and Full,
respectively the Rule and Full variants.

Since the semantics of the Core, Flight, and Rule variants is the same, and
since Flight syntactically extends Core and Rule syntactically extends Flight,
layering between these variants is trivial. Therefore, we primarily focus our
discussion on the layering between WSML-Core and DL.

The differences between the semantics of WSML-Core and DL can be sum-
marized as follows:

1. WSML-DL interpretations partition the domain, thereby distinguishing
between concepts, attributes, and instances,

2. WSML-DL interpretations impose additional conditions on subclass ( :: )
and implies-type ( it ) constructs, thereby strengthening their interpreta-
tion (see below for an example),

3. the semantics of WSML-Core is defined with respect to a single minimal
model, whereas WSML-DL theories may have multiple models, and

4. entailment in WSML-Core is only defined for ground atomic formulas
and molecules, whereas entailment in WSML-DL is defined for arbitrary
formulas and ontologies.

It turns out that the first difference (partitioning of the domain in WSML-DL
interpretations) does not have practical implications due to the fact that the
equality symbol is not used in WSML-Core (this is discussed in more detail
below). The fourth difference indicates that it is only meaningful to discuss
layering in the context of entailment of ground atomic formulas and molecules;
it turns out that in that context, the third difference (single versus multiple
models) does not have practical implications (this is also discussed in more
detail below). The second difference – different interpretation of the subclass
and implies-type constructs – does have practical implications, as illustrated
in the following example.

Example 5.5. Consider the WSML-Core theory Φ:

Person[hasChild itPerson]
Astronaut ::Person

∀ax(x :Person ⊃ x :Animal)

which says that, for every instance of the class Person, each value of the
attribute hasChild is an instance of Person, Astronaut is a subclass of Person,
and every instance of Person is also an instance of Animal. Now consider
the formulas φ1 = Astronaut[hasChild itPerson] and φ2 = Person ::Animal;



5.3 Layering of WSML Variants 85

φ1 and φ2 are both WSML-DL entailments of Φ, but neither is a WSML-
Core entailment of Φ, due to the conditions (5.4) and (5.5) on WSML-DL
interpretations, respectively.

It is the case, as we will see later, that the set of WSML-Core entailments
of a given Core theory Φ is a subset of the set of WSML-DL entailments of
the same theory Φ. However, in certain situations it would be more desirable
if the entailments under both semantics would be the same, e.g., when using
a WSML-DL reasoner for processing WSML-Core theories. It turns out, also
discussed below, that for a subset of the WSML-Core theories the sets of
(ground) WSML-Core and WSML-DL entailments are the same.

5.3.1 Definition of Language layering

The above considerations lead us to defining two approaches to language lay-
ering in WSML. When considering loose layering, a variant L2 is layered on
a variant L1 if, considering an arbitrary theory of L1, every L1-formula that
is a consequence under L1 semantics, is also a consequence under L2 seman-
tics. When considering strict layering, additionally every L1-formula that is a
consequence under L2 semantics must be a consequence under L1 semantics.
Note that loose layering implies strict layering.

Considering these notions of language layering in the context of OWL, we
observe that OWL Lite and OWL DL are strictly layered, and that OWL Full
is not strictly, but only loosely layered on OWL DL; furthermore, OWL Full
is loosely layered on RDFS (see [77]).

It turns out that if we want to guarantee strict language layering in WSML,
we must pose certain restrictions on the entailments that are considered;
namely, subclass and implies-type statements may not be considered. Ad-
ditionally, we need to pose restrictions on the antecedents of WSML-Flight
and Rule formulas; namely, subclass and implies-type statements may not ap-
pear in the antecedents, because they could be used to “simulate” entailment
of such statements.

With WSML-Flight− (resp., Rule−) we mean the WSML variant obtained
from WSML-Flight (resp., Rule) by disallowing :: - and it -molecules in the
antecedents of formulas (rule bodies). WSML-Core− is the same as WSML-
Core.

Admissible entailments are subsets of all formulas of a given WSML vari-
ant. The admissible entailments of the WSML variants are defined as follows:

• Core−/Flight−/Rule−: every it - and :: -free WSML-(Core/Flight/Rule)
ground atomic formula is an admissible entailment;

• Core/Flight/Rule: every WSML-(Core/Flight/Rule) ground atomic for-
mula is an admissible entailment;

• DL: every WSML-DL sentence is an admissible entailment.

Using this notion of admissible entailment, we can now formally define lan-
guage layering.



86 5 Description of Ontologies

Definition 5.6. Let L1, L2 be two WSML variants. Then, L2 is loosely lay-
ered on top of L1, denoted L1 ⇒l L2, if for every L1 theory Φ and admissible
entailment of L1, α is an L2 entailment of Φ whenever α is an L1 entailment
of Φ.

If, in addition, α is an L1 entailment of Φ whenever α is a L2 entailment
of Φ, L2 is strictly layered on top of L1, denoted L1 ⇒s L2.

5.3.2 WSML Language Layering

With the necessary definitions of language layering in place, we are now nearly
ready to state the properties of language layering in WSML. However, we
first need the following result for overcoming the differences related to the
partitioning of the domain in WSML-DL interpretations and the difference
in the definition of the semantics of models of WSML-Core and DL (minimal
versus multiple models).

Lemma 5.7. Given a concrete domain scheme S. Let Φ be a WSML-Core
theory and let α be a ground atomic formula.

• Φ has a single minimal Herbrand S-model iff Φ has a S-model and
• α is satisfied in every minimal Herbrand S-model of Φ iff α is satisfied in

every S-model of Φ.

Proof (Sketch). Φ can straightforwardly be transformed to an equi-satisfiable
first-order theory Φ′ by (1) replacing every data value d with its interpretation
dS, (2) replacing molecules with binary and ternary predicates (e.g., replace
a :: b with subclass(a, b)), and (3) add axioms that captures the semantic
conditions of the subclass and implies-type molecules; these axioms axiomatize
the conditions (5.1) and (5.2). Φ′ is obviously a Horn logic theory. The lemma
follows immediately from the classical results by Herbrand (e.g., [59]). ��
Theorem 5.8 (WSML Language Layering).

1. WSML-Core ⇒l WSML-Flight ⇒l WSML-Rule.
2. WSML-Core ⇒l WSML-DL.
3. WSML-Core− ⇒s WSML-Flight− ⇒s WSML-Rule−.
4. WSML-Core− ⇒s WSML-DL.

Proof. 1. and 3. follow immediately from the definition of the semantics of
WSML-Core, WSML-Flight, and WSML-Rule.

Recall the four differences between WSML-Core and WSML-DL from the
introduction to the section. Discrepancy 4. (ground versus arbitrary entail-
ment) is overcome by the definition of admissible entailments: we only consider
ground formulas. Discrepancies 1. (partitioning of the domain) and 3. (sin-
gle versus multiple models) are overcome by Lemma 5.7: we need to consider
only a single minimal model for checking satisfiability and ground entailment,



5.3 Layering of WSML Variants 87

even if a theory as multiple models and the domain of the minimal model is
partitioned.

The minimal Herbrand model I of a WSML-Core theory Φ can be straight-
forwardly transformed into an interpretation I ′ that satisfies the conditions
(5.4) and (5.5). Since I′ is a Herbrand model and since there is a distinction in
the WSML-Core syntax between instance, concept, and attribute identifiers,
it is easy to find a partitioning of the domain into instance, attribute, and
concept domains. Additionally, by the fact that I is a minimal model and by
the syntactical restrictions on WSML-Core theories, ≺U is only defined on
U c, ∈U is a relation between U i and U c, and I hv (u) = I it (u) = I ot (u) = ∅
for any u ∈ U c ∪ U i. Therefore, I ′ is a WSML-DL interpretation.
By the syntactical restrictions on WSML-Core theories it is easy to verify that
I′ WSML-DL satisfies Φ and that I′ is in fact a minimal WSML-DL model
of Φ, establishing loose layering (2.).

Given an it - and :: -free ground atomic formula α, clearly I |= α iff I′ |=DL α.
This establishes strict layering between WSML-Core− and WSML-DL (4.).

��
Consider example 5.5. Observe that φ1 and φ2 are not admissible WSML-
Core− consequences. In fact, the sets of WSML-Core and WSML-DL entail-
ment of Φ coincide when considering only admissible WSML-Core− entail-
ment, as was demonstrated with Theorem 5.8.

Comparing strict and loose language layering, we observe that if strict lan-
guage layering is considered, the definitions of the language variants we con-
sider, specifically WSML-(Core−/Flight−/Rule−), are more restrictive, and
there are certain (some may argue, unintuitive) restrictions on the kinds of
admissible entailments. In fact, the Core−, Flight−, and Rule− variants are
less expressive than the usual Core, Flight, and Rule variants, which we con-
sider under loose layering, because inferences of it - and :: -statements may
not be considered for strict layering.

The use of loose layering seems more attractive than strict layering. In-
deed, we have chosen to use loose layering for the standard language variants.
In addition, the use of loose language layering is common in Semantic Web
standards; for example, RDFS is loosely layered on top of RDF, OWL Full
is loosely layered on top of RDFS, and OWL Full is loosely layered on top
of OWL DL. However, one could imagine scenarios in which strict language
layering is more attractive. For example, when directly using a WSML-DL
reasoner for reasoning with WSML-Core theories, one needs to be sure that
the semantics correspond; otherwise, certain inferences might be incorrect
with respect to the WSML-Core semantics. In this case, one needs to restrict
oneself to WSML-Core−.



88 5 Description of Ontologies

Core DL Flight Rule

RDFS no no yes yes

OWL DL DLP subset yes DLP subset DLP subset

Table 5.2. Use of RDFS/OWL in WSML variants

5.4 Combination with RDFS and OWL DL

Recall that a WSML ontology may import RDFS and/or OWL DL ontologies.
Furthermore, Web service descriptions may directly import RDFS and OWL
DL ontologies, besides WSML ontologies. In this section we address the se-
mantics of such combinations of WSML ontologies with RDFS and/or OWL
DL. Specifically, we extend the notions of satisfiability and entailment defined
in Section 5.2 to such combinations.

Recall that there are certain restrictions on the use of RDFS and OWL
ontologies with specific WSML variants. See Table 5.2 for a summary of the
restrictions.

Recall also that when an ontology imports an ontology with a higher vari-
ant, the ontology automatically adopts the higher variant. For example, if a
WSML-Core ontology imports an RDFS ontology, the variant automatically
becomes WSML-Flight and if a WSML-Core ontology imports an OWL DL
ontology that is not in the DLP subset, the variant automatically becomes
WSML-DL. If, however, a WSML-DL ontology imports an RDFS ontology or
a WSML-Rule ontology imports an OWL DL ontology that is not in the DLP
subset, the variant becomes WSML-Full.

The remainder of this section is structured as follows. We first extend the
notion of S-model with RDFS ontologies, based on the RDFS model theory
[73]. We then extend the notions of WSML-DL S-model and S-model with
OWL DL ontologies (resp, the DLP subset), based on the OWL DL model
theory [115, Section 3]. Finally, we define the notions of satisfiability and
entailment for combinations of WSML-DL with OWL DL and combinations
of WSML-Rule with RDFS and (the DLP subset of) OWL DL, respectively.

5.4.1 Combination with RDFS

The RDF semantics specification [73] defines the semantics of RDFS with
data types using the notions of D-interpretation and D-entailment for RDFS
with datatypes. We define the semantics of combinations of WSML and RDFS
ontologies by combining WSML interpretations with D-interpretations.

To this end, we first establish a correspondence between concrete domain
schemes and datatype maps, after which we define the notion of combined
WSML-RDF interpretations. Note that concrete domain schemes are more
general than datatype maps, because they include built-in functions and pred-
icates.



5.4 Combination with RDFS and OWL DL 89

Data Types, Datatype Maps, and Concrete Domain Schemes

The symbol D in D-interpretation and D-entailment denotes a datatype map,
which provides the datatypes that are to be considered in a particular en-
tailment question. So, their purpose is similar to that of concrete domain
schemes.

We proceed with the formal definitions of datatypes and datatype maps,
following [73, Section 5], and define the notion of compatibility between con-
crete domain schemes and datatype maps.

Datatypes define sets of concrete data values (e.g., strings and integers), along
with their lexical representations. Formally, a datatype d consists of

• a lexical space Ld, which is a set of Unicode character strings (e.g., “0”,
“1”, “01”, . . . , in the case of the xsd#integer datatype), which are the
lexical representations of the data values,

• a value space V d, which is a set of values (e.g., the numbers 0, 1, 2, . . . ,
in the case of the xsd#integer datatype), and

• a lexical-to-value mapping L2V d, which is a mapping from the lexical
space to the value space (e.g., {“0” �→ 0, “1” �→ 1, “01” �→ 1, . . .}, for the
xsd#integer datatype).

A datatype map D is a partial mapping from IRIs to datatypes. With dom(D)
we denote the domain of D and with ran(D) we denote the range of D. So,
dom(D) is the set of datatype identifiers and ran(D) is the set of datatypes.

We assume that if any two datatype maps D1 and D2 are both defined on
a datatype identifier d, i.e., they both interpret the same datatype identifier,
then they map d to the same datatype: if d ∈ dom(D1) and d ∈ dom(D2),
then D1(d) = D2(d). This assumption is reasonable, because IRIs are global
identifiers; therefore, a single IRI may not identify two different datatypes.

Compatibility between Concrete Domain Schemes and Datatype Maps

Intuitively, a concrete domain scheme is compatible with a datatype map if
the sets of datatype identifiers are the same, these datatype identifiers can be
used to identify the same sets of values, and there is a correspondence between
the mappings from the syntax to the semantics.
Formally, we say that a concrete domain scheme S = 〈US,FS,DS,PS, ·S〉
is compatible with a datatype map D if

• dom(D) = DS,
• for each n-ary d ∈ DS holds that

– the range of dS is the same as V D(d), and
– there is a 1-to-1 correspondence between n-tuples 〈t1, . . . , tn〉, where

t1, . . . , tn are elementary data values, in the domain of dS and character
sequences s ∈ LD(d) such that dS(〈t1, . . . , tn)〉 = L2V D(d)(s).



90 5 Description of Ontologies

Since we assume that there is no difference in the mapping of datatype identi-
fier D between any two datatype maps, each concrete domain scheme S has a
unique minimal (wrt. dom(D)) compatible datatype map D, which we denote
with DS.

Consider, for example, a concrete domain scheme S that includes the
xsd#date datatype (i.e., xsd#date ∈ DS). The domain of DS includes xsd#date

and the lexical-to-value mapping is compatible with xsd#dateS; for example,
xsd#date(2007, 7, 6) is the same as L2V D(xsd#date)(”2007-07-06”), namely it
is the date “July 6, 2007”.

Combined WSML-RDF Interpretations

We first review the notion ofD-interpretation, after which we define the notion
of a combined WSML-RDF S-interpretation, which is used to interpret both
WSML ontologies and RDF graphs.

A D-interpretation [73] is a tuple I = 〈U,UP , LV, IF , IL, Iext〉, where U
is a non-empty set, called the domain, UP ⊆ U is a countable set of prop-
erties, LV ⊆ U is a set of literal values that includes all Unicode character
sequences, IF is a mapping from IRIs to elements of U , IL is a mapping from
typed literals (i.e., pairs of Unicode character sequences and datatype IRIs)
to elements of U , and Iext is an extension function that maps elements in U
to sets of pairs of elements in U : Iext : UP → 2(U×U). Additionally, every D-
interpretation must satisfy a number of conditions, as specified in [73]; these
conditions govern the behavior of the RDFS ontology modeling vocabulary
and the connection between interpretations and datatype maps.

Given a concrete domain scheme S. Let DS be the minimal compatible
datatype map. A combined WSML-RDF S-interpretation is a pair 〈I, I〉,
where I = 〈U,≺U ,∈U , U

D, IF , IP , I hv , I it , I ot 〉 is a WSML S-interpretation
and I = 〈U ′, UP , LV, IF , IL, Iext〉 is a DS-interpretation, such that the fol-
lowing conditions hold:

1. U ′ = U ∪ UD,
2. LV = UD,
3. UP ⊇ {p | ∃s, o.〈s, o〉 ∈ I�(p)},
4. IF (t) = IF (t) for every IRI t,
5. Iext = I hv ,
6. Iext(IF (rdf :type)) =∈U , and
7. Iext(IF (rdfs:subClassOf)) = {〈a, b〉 | a, b ∈ U & a � b & a ∈U

IF (rdfs:Class) & b ∈U IF (rdfs:Class)}.
Note that the interpretation of (well-)typed literals in I corresponds with
the interpretation of data values in I due to the compatibility of S and DS.
Likewise, the interpretation of plain literals without language tags corresponds
with the interpretation of strings, due to the way plain literals are interpreted
in RDF [73]. Note also that there is no representation in WSML of ill-typed
literals (e.g., “a”^^xsd:integer).



5.4 Combination with RDFS and OWL DL 91

Conditions 1 and 2 ensures that the domains under consideration are the
same. Condition 3 ensures that the set of properties in the RDF interpretation
includes at least those elements that are used as properties in the WSML
interpretation. Condition 4 ensures that all IRIs are interpreted in the same
way.

Due to condition 5, there is a correspondence between RDF triples of the
form 〈s, p, o〉 and WSML molecules of the form s[phvo]. Likewise, there is a
correspondence between RDF triples of the form 〈a, rdf :type, c〉 and WSML
molecules of the form a : c and a correspondence between RDF triples of the
form 〈c, rdfs:subClassOf, d〉 and WSML molecules of the form c ::d, by the
conditions 6 and 7. Namely, whenever 〈c, rdfs:subClassOf, d〉, then c ::d. Note
that it is not necessarily the case that if c ::d, then 〈c, rdfs:subClassOf, d〉,
because c ::d holds whenever c = d, whereas 〈c, rdfs:subClassOf, d〉 may not
hold even if c = d; in RDFS, the subclass relation may only hold between
elements which have the type rdfs:Class.

Before defining models, and entailment we first define interpretations of
combinations with OWL DL. We then define satisfiability and entailment of
combinations of the three kinds of ontologies.

5.4.2 Combination with OWL DL

We now extend the notion of combined WSML-RDF interpretations to in-
clude OWL DL interpretations, leading to the notion of WSML-RDF-OWL
interpretation. The OWL DL interpretations are used for interpreting OWL
ontologies, and correspondence between the WSML and OWL interpretations
is defined through a number of conditions, analogous to the correspondence
between RDF and WSML interpretations.

We note that the notion of OWL DL interpretation we use here corresponds
to the notion of abstract OWL interpretation [115, Section 3.1].

Given a datatype map D, an abstract OWL interpretation with respect to D
is a tuple I = 〈R,EC,ER,L, S, LV 〉, where

• R is a nonempty set,
• LV ⊆ R is the set of literal values,
• EC maps class and datatype identifiers to sets,
• ER maps properties to binary relations,
• L maps typed literals to literal values, and
• S maps IRIs to elements of R.

Additionally, every abstract OWL interpretation has to satisfy a number of
conditions, as specified in [115, Section 3].

Given a concrete domain scheme S and the minimal compatible datatype
map DS, a combined WSML-RDF-OWL S-interpretation is a tuple 〈I, I, I〉,
where I = 〈U,≺U ,∈U , U

D, IF , IP , I hv , I it , I ot 〉 is a WSML interpretation
that conforms with S, I = 〈U,UP , IF , Iext〉 is a DS-interpretation, and



92 5 Description of Ontologies

I = 〈R,EC,ER,L, S, LV 〉 is an OWL DL interpretation with respect to DS,
such that 〈I, I〉 is a combined WSML-RDF S-interpretation and the following
conditions hold:

1. R = U ∪ UD,
2. LV = UD,
3. for every concept or datatype identifier c, EC(c) = {k | k ∈ U ∪
UD & k ∈U IF (c)},

4. for every property identifier p, ER(p) = {〈a, b〉 | a, b ∈ U ∪ UD & 〈a, b〉 ∈
I�(IF (p)}, and

5. S(t) = IF (t) for every IRI t.

Conditions 1 and 2 ensure that all ontologies talk about the same domain.
Conditions 3 and 4 ensure that classes of properties are interpreted the same
way. Finally, condition 5 ensures that IRIs are interpreted in the same way.

5.4.3 Satisfiability and Entailment of Combinations

We are now ready to define the semantics of WSML ontologies that import
RDFS and/or OWL DL ontologies and of combinations of WSML, RDFS,
and OWL DL ontologies. Such combinations may arise, for example, if several
different ontologies are imported in a Web service description.

As before we distinguish between the semantics of the WSML-DL variant,
on the one hand, and the WSML-Core, Flight, and Rule variants, on the
other. The notions of model, satisfiability, and entailment are extensions of
the corresponding notions for WSML ontologies defined in Section 5.2.

WSML-DL Semantics of Combinations

Recall that, when considering the WSML-DL variant, combinations with
RDFS ontologies are not allowed. Therefore, we only consider WSML-DL
and OWL DL ontologies in the combination.

In the definition of the semantics of WSML-DL ontologies, in Section 5.2.2,
we defined the notions of models, satisfiability, and entailment for WSML-DL
ontologies that import other WSML-DL ontologies. We now consider both
WSML-DL and OWL DL ontologies that possibly import both WSML-DL
and OWL DL ontologies.

Given a concrete domain scheme S, a combined WSML-RDF-OWL interpre-
tation 〈I, I, I〉 is a DL S-model of a WSML-DL or OWL DL ontology O
if

1. I is WSML-DL interpretation,
2. in case O is a WSML-DL ontology, I is a WSML-DL S-model of a theory
Φ that corresponds to O,

3. in case O is an OWL DL ontology, I satisfies O with respect to DS

according to [115, Section 3.4], and



5.4 Combination with RDFS and OWL DL 93

4. 〈I, I, I〉 is a DL S-model of every ontology imported by O.

We are now ready to define the semantic notions of WSML-DL, analogous to
the notions defined in Section 5.2.2.

Concept Satisfiability Given a concrete domain scheme S, let c be a con-
cept identifier. We say that c is DL S-satisfiable with
respect to a set of WSML-DL and OWL DL ontologies
O if there is a combined WSML-RDF-OWL interpre-
tation 〈I, I, I〉 that is a model of every O ∈ O such
that IF (c)cext �= ∅, i.e., the concept extension of c is
not empty.

Ontology Satisfiability Given a concrete domain scheme S, a set of WSML-
DL and OWL DL ontologies O is DL S-satisfiable if
there is a combined WSML-RDF-OWL interpretation
〈I, I, I〉 that is a model of every O ∈ O.

Formula Entailment Given a concrete domain scheme S, a set of WSML-
DL and OWL DL ontologies O DL S-entails a formula
φ if for every combined WSML-RDF-OWL interpre-
tation 〈I, I, I〉 that is a model of every O ∈ O holds
that I is a WSML-DL S-model of φ.

Ontology Entailment Given a concrete domain scheme S, a set of WSML-
DL and OWL DL ontologies O DL S-entails a WSML-
DL or OWL DL ontology O if for every combined
WSML-RDF-OWL interpretation 〈I, I, I〉 that is a
model of every O′ ∈ O holds that 〈I, I, I〉 is a DL
S-model of O′.

WSML-Core, Flight and Rule Semantics of Combinations

As we did for WSML ontologies, we define the semantics of WSML-Core,
Flight, and Rule combinations using a notion of stable models. The domains
of these stable models are somewhat extended, compared with the stable
models of WSML ontologies, in order to account for the blank nodes in RDF
graphs. So, we essentially Skolemize the blank nodes by replacing them with
constant symbols.

We note that the semantics of these three variants is only defined for OWL
DL ontologies that fall within the DLP fragment, i.e., those ontologies that
are equivalent to sets of equality-free Horn formulas, and are hence essentially
negation-free rules.

We first extend the notion of Herbrand models to combinations. We then
define the notion of a stable model of a combination.



94 5 Description of Ontologies

Herbrand Models of Combinations

Recall that we define Herbrand interpretations relative to a concrete domain
scheme S = 〈US,FS,DS,PS, ·S〉. Recall also that D denotes the set of all
data values in S: D =

⋃{dS | d ∈ DS}.
In the remainder of this section, the symbol O denotes a set of WSML,

RDFS, and OWL DL ontologies. The set of constant symbols of O is the set of
IRIs, blank nodes, literals, and data values in every ontology in O (we assume
anonymous identifiers have been replaced with IRIs, as described in Section
5.2.3). The set of function symbols of O is the set of all symbols occurring in
a function position in any WSML ontology in O. The set of ground terms of
O is the set of all ground terms that can be formed from the constant and
function symbols of O.

The Herbrand S-universe of O is the union of set of ground terms of O that
are not data values and the set of values tS in D whose lexical representation
t occurs in any of the ontologies in O.

A Herbrand WSML-RDF-OWL S-interpretation 〈I, I, I〉 of O is a WSML-
RDF-OWL S-interpretation where

• the domain of I, U , is the Herbrand S-universe of O and
• for every ground term t of O, tI = t′, where t′ is obtained from t by

replacing every data value d in t with dS.

Recall the conditions on combined WSML-RDF-OWL interpretations in Sec-
tions 5.4.1 and 5.4.2. These conditions ensure that the parts of the domains
of RDF and OWL interpretations that are not literal values correspond to
the domain of the WSML interpretation I. Therefore, these domains corre-
spond to the Herbrand S-universe as well. Additionally, due to the fact that
IRIs are interpreted the same in all three interpretations, all ground terms are
interpreted in the same way in all three interpretations.

We are now ready to define the notions of model and minimal model. As
before, a model of an ontology is required to be a model of every imported
ontology.

A set of WSML, RDFS, and OWL DL ontologies O is imports-closed if
for every ontology O imported by any ontology O′ in O holds that O ∈ O.

Now, a Herbrand WSML-RDF-OWL S-interpretation 〈I, I, I〉 is a S-
model of an imports-closed set of ontologies O if

• for every WSML ontology O ∈ O, I is a S-model of the theory Φ corre-
sponding to O,

• for every RDFS ontology O ∈ O, I satisfies O, and
• for every OWL DL ontology O ∈ O, I satisfies O.

We can now define the notion of a minimal Herbrand S-model. A Herbrand
WSML-RDF-OWL S-interpretation 〈I, I, I〉 is a minimal Herbrand S-model
of an imports-closed set of ontologies O if



5.4 Combination with RDFS and OWL DL 95

• 〈I, I, I〉 is a S-model of O and
• whenever a Herbrand S-interpretation 〈I ′, I ′, I′〉 is an S-model of O and

I′ ⊆ I, then I ′ = I.

Stable Models of Combinations

The definition of stable models of combinations is similar to the definition of
stable models for WSML ontologies. Likewise, we guess a model, “evaluate”
the grounding of a combination by computing the reduct, and check whether
the model we guessed is the minimal Herbrand model of the reduct.

It turns out that in a set of WSML, RDFS, and OWL DL ontologies we
only need to ground the WSML ontologies, because the RDFS and OWL DL
ontologies do not contain negation (recall that the OWL DL ontologies are
required to be in the DLP fragment, which is negation-free).

The grounding of O, denoted gr(O), is obtained from O by replacing every
WSML ontology O ∈ O by gr(O), which is the union of all possible ground
instantiations of the corresponding WSML theory Φ, obtained by

• replacing each abstract (resp., concrete) variable in a formula φ ∈ Φ with
a ground (resp., ground concrete) term in the Herbrand S-universe of O
and

• replacing each data value d in φ with the corresponding concrete data
value dS,

for each formula φ ∈ Φ.
The reduct of O with respect to a combined Herbrand S-interpretation

〈I, I, I〉, denoted O〈I,I,I〉, is obtained from gr(O) by, for each WSML ontology
O ∈ gr(O),

• deleting each formula r with a not c in the antecedent such that c ∈ I and
• deleting not c from the antecedent of every remaining formula r.

Given a concrete domain scheme S, a Herbrand WSML-RDF-OWL S-
interpretation 〈I, I, I〉 is a stable S-model of an imports-closed set of on-
tologies O if 〈I, I, I〉 is a minimal Herbrand S-model of O〈I,I,I〉.

Using the notion of stable S-model we define the semantic notions for WSML-
Core, Flight, and Rule combinations.

Satisfiability Given a concrete domain scheme S, an imports-closed set of
ontologies O is S-satisfiable if O has a stable S-model.

Entailment Given a concrete domain scheme S, an imports-closed set of
ontologies O S-entails a ground atomic formula α if for every
stable S-model 〈I, I, I〉 of O holds that I |= α.

In this chapter we have defined WSML ontologies, and the semantics of their
combination with RDFS and OWL DL ontologies. We have defined two no-
tions of satisfiability and entailment, one for WSML-DL and one for WSML-
Core/Flight/Rule. We have subsequently extended these notions to combina-
tions with RDFS and OWL DL ontologies.



96 5 Description of Ontologies

The notions defined in this chapter can be used directly for reasoning with
WSML ontologies, as well as their combination with RDFS and OWL DL on-
tologies, bearing in mind the restrictions outlined in Table 5.2 on page 88. As
such, these notions also provide the basis for using ontologies in the functional
and behavioral Web service descriptions. In fact, the semantics of functional
and behavioral descriptions, described in the following two chapters, are para-
meterized with respect to the satisfiability and entailment relations. Therefore,
these descriptions can be used with any of the WSML variants.



6

Functional Description of Services

Where the previous chapter defined the semantics of WSML ontologies (the
static knowledge component of Web service descriptions), this chapter de-
scribes how WSML can be used to capture the functionality of Web services.
We consider both set-based and state-based capabilities, describing the mod-
els underlying these kinds of description, as well as the formal relations that
can be defined between goals and Web services based on these models.

In general it is important to understand the conceptual model and the par-
ticular assumptions underlying each specific approach to service description.
Different approaches vary greatly in the level of detail that can be expressed.
In terms of functional descriptions we are interested in modelling what a ser-
vice does as opposed to how a certain functionality is achieved. If we consider
for example a Web service capable of processing credit card payments, we are
interested in the details of this functionality, i.e., which credit cards are ac-
cepted (Visa, Master Card, JCB, ...), which currencies and what kind of fraud
checking is provided. In this chapter we are not concerned with non-functional
aspects such as the supported transport layer security or the guarantees in
terms of service availability.

Describing the functionality of a service explicitly has many advantages.
Most notably it allows potential users to easily find a certain Web service. In
terms of discovery the Web service life cycle starts once it has been created
and published by a provider (cf. the Web service usage process in Figure 3.2
on page 3.2). Web service technology allows to the invoking of services over
the internet, however without knowing about a service a potential user will
not be able to use it. So if someone is in the need of a certain functionality he
needs to perform some kind of search in order to find a list of services that is
able to provide the functionality desired. In order to decide whether a service
does actually provide a certain functionality or not a matchmaking procedure
based on some kind of description has to be performed. Semantic annotations
can reduce the amount of manual labor involved in this process by providing
accurate descriptions of client requests and the services offered.



98 6 Functional Description of Services

Consider, in contrast, a discovery service that only allows to query services
by keyword will require a human to manually asses a potentially large list of
matches to determine which are actually providing the functionality desired.
When both the request and the response are semantically described a match-
ing engine can guarantee that all results indeed fulfill the desire expressed in
the request. For example a request for a payment service to handle Visa cards
can be matched against a service offering all major credit cards by using the
appropriate background knowledge (in an ontology). However, performing a
keyword query for “visa creditcard” will not necessarily return only payment
services. In fact using an existing search engine for Web services1 one quarter
of the results of this query have been validation services.

In the remainder of the chapter we will first give an overview of the most
prominent approaches to the functional description of Web services, in Section
6.1. We then proceed with a description of the models underlying capability
descriptions, as well as notions of consistency and capability matching, both
for set-based and state-based capability descriptions, in the Sections 6.2 and
6.3, respectively.

6.1 Approaches to Functional Description

When describing functionality we can do this in various ways. The simplest
possible way is to base it on natural language text, i.e., to use a set of keywords
to capture the functionality. For the payment service this could be “payment”,
“credit card”, etc. Obviously this type of description has the advantage of not
requiring complex logical expressions and trained knowledge engineers, how-
ever the descriptions are not very precise and tend to be ambiguous. Imagine
you want to express that a service that accepts all major credit cards, but only
does business with merchants based in North America. With keywords alone
one cannot capture these facts in a way that they can be easily understood
and processed by a machine.

With an ontology language we can express this specific information. We
can model the concept of a payment service that has numerous properties. An
example of such a property would be “accepted credit cards”, whose values
are the accepted credit cards. We refer to this kind of functional description
as “set-based”. The functionality is described by an ontological concept that
describes the service (i.e., what it delivers).

Although a set-based description using an expressive ontology language
can be used to describe many aspects of a service it has limitations: we can
not explicitly refer to constraints that must hold in order for the service to
be able to execute, nor can we describe the concrete dependencies between
the pre and post-states. For example this is required in order to describe that
before some service is executed some service the available credit of the card
1 http://seekda.com



6.1 Approaches to Functional Description 99

holder must be at least as high as the payment amount. We will refer to this
type of description as “state-based”.

Still finer grained levels of description are sometimes required. Suppose
we want to describe a service conducting bank transfers; besides single bank
transfers the service offers processing of multiple transfers at once, in a batch
processing fashion. Assuming that a batch can contain credits as well as with-
drawals the lowest intermediate balance will depend on the order of how the
transfers are internally executed. In case all withdrawals are performed first
and only then all credits, the account will have a lower intermediate balance
then if the order would be reversed. Although in general the functional de-
scription is not concerned about how a particular functionality is achieved we
still might be interested in modeling execution invariants, i.e., some condi-
tions that must hold in all states that exist between invoking the Web Service
and after that invocation has completed. This might be for example that the
account balance must be always greater then zero. However, in this chapter
we are not concerned with this level of detail. Such constraints are part of the
behavioral description of the service (see Chapter 7).

Every of these levels implies a different description of Web services, rang-
ing from detailed characterizations of pre- and post-states to less detailed de-
scriptions using (complex) concepts in an ontology and simple unstructured
keywords. Consequently, the achievable accuracy of a result in the discovery
process varies significantly, as more or less structure is reflected in the de-
scriptions. On the other hand, the ease of providing the descriptions varies
drastically between these levels as well. Whereas simple keywords are easy
to provide, using ontological concepts already requires the publisher to either
familiarize himself with the applicable domain ontologies or create their own
ones. The provision of detailed state-based descriptions requires most effort.
The more fine-grained the information, that the descriptions reveal, the more
complex the algorithms must be that to deal with these descriptions. There-
fore, there is a trade-off between the accuracy and complexity of descriptions.
In turn, lower accuracy of a Web service descriptions leads to a lower preci-
sion of the discovery process and higher complexity of descriptions leads to
increased effort and skills required for service description, as well as decreased
efficiency of the discovery process. This trade off is illustrated in Figure 6.1.

In principle the different models (state- versus set-based) are not tied to
particular representation formalisms. WSML, however allows writing service
descriptions at all of theses different levels of granularity. Moreover we can
use different WSML variants to describe Web services at each of those levels.
For example the set-based approach can be realized using WSML-DL. WSML
leaves the choice of the concrete variant to the user, so that he can choose the
expressivity suitable for his particular task.

Since a keyword based description (and the appropriate matchmaking) do
not require a semantic language such as WSML we omit further discussion
here. The interested reader can find additional information on how keyword



100 6 Functional Description of Services

Fig. 6.1. Trade-off between accuracy and complexity for service descriptions

based technologies have been applied to the domain of Web service discovery
in [47, 92].

6.2 Set-Based Web Service Description

In this section we present a formal modeling approach for Web services and
goals that is based on set theory and exploits ontologies as formal, machine-
processable representation of domain knowledge. We discuss Web service dis-
covery based on this approach for simple semantic descriptions and describe
how the set-based model in WSML is implemented.

The set-theoretic notions discussed in this section give rise to a set-based
discovery mechanism.

6.2.1 The Model

One main characteristic of object oriented approaches is that the problem
domain is understood as a collection of objects and objects with similar prop-
erties can be grouped together into sets or classes. Each class captures common
(syntactic and semantic) features of their elements. Features can be inherited
from one class to another by defining class hierarchies. In this way, the domain
of discourse can be structured as a collection of classes and each class is a set
of things. We apply this model to describe the functionality of a Web service
as a set.

A Web service provides some value to the entity that invokes it. The in-
vocation itself is based on Web service technologies like SOAP and WSDL,
however these technical details of invocation are not necessarily relevant for
discovery based on functional specifications. Only if one considers discovery to-
gether with the adaptation/invocation of the service does one need to cater for



6.2 Set-Based Web Service Description 101

the particularities of the invocation mechanism. To judge wether the function-
ality offered by a Web service matches the one requested it is not necessary to
check compatibility on the interface level, since it might be possible to bypass
mismatches by mediators. The execution of the Web service with particular
input values generates certain piece of information as an output and achieves
certain changes in the state of the world. An output as well as an effect can
be considered as objects which can be embedded in some ontology.

Goals on the other hand specify the desire of a client that he wants to
have resolved after invoking a Web service, that means they describe the
information the client wants to receive as output of the Web service execution
as well as the effects on the state of the world. This desire can be represented
as sets of elements that are relevant to the client as the outputs and the effects
of a service execution. Goals therefore refer to the desired state of the world.

Both Web services and goals are represented by sets of objects. These
sets of objects are described in ontologies that capture general knowledge
about the domain under consideration. Matching a Web service to a Goal
requires that there exists some mutual relationship between the objects used
in their descriptions. This relationship can be established with reference to
the ontology (or ontologies) used to describe these objects. We define domain-
independent notions of matching in Section 6.2.2.

An important observation is that the description of a set of objects for rep-
resenting a goal or a Web service actually can be interpreted in different ways
and thus the description by means of a set is not semantically unique: A mod-
eler might want to express that either all of the elements that are contained
in the set are requested or can be delivered (∀), or that only some of these
elements are requested or can be delivered (∃). Consider for example someone
who wants to find pricing information of some multimedia product (∃), versus
someone who wants to know about the prices of all available products in a
certain product category (∀).

Clearly, a modeler has some intuition in mind when specifying such a set
of relevant objects for a goal or Web service description and this intention
essentially determines whether we consider two descriptions to match or not.
Thus, this intuition should be stated explicitly in the descriptions of service
requests or service advertisements.

Given our previous considerations we can model goals and Web services
as follows: A goal G and a Web service W are represented by sets of objects
from some common universe U (i.e., G,W ⊆ U). These sets represent relevant
objects for the description. In addition, both G and W have an associated
intention I ∈ {∀, ∃}.

6.2.2 Matching Web Services and Goals

In order to assert a goal G and a Web service W match on a semantic level,
the sets G and W describing these elements have to be interrelated somehow;
specifically, we expect that some set-theoretic relationship between G and W



102 6 Functional Description of Services

has to exist. The most basic set-theoretic relationships that one might consider
are the following:

G = W Set equality
G ⊆W Goal description is a subset of the Web service description
W ⊆ G Web service description is a subset of the goal description
G ∩W �= ∅ The goal and Web service descriptions have some elements in

common
G ∩W = ∅ The goal and Web service descriptions have no elements in com-

mon

These set-theoretic relationships provide the basic means for formalizing our
intuitive understanding of a match between goals and Web services. In fact,
the above relationships have been considered in the context of Description
Logic-based matching in [94] and [114]. The terminology for matching notions
in these papers has been inspired by work done in the context of matching
based on component specifications [139].

However, we have to keep in mind that in our model these sets only capture
part of the semantics of goal and service descriptions, namely the relevant
objects for the service requestor or service provider. The intentions of these
sets in the semantic description of the goal or Web service is not considered but
clearly affects whether particular set-theoretic relationships between G andW
correspond to intuitive notions of matching. Hence, we have to consider the
intentions of the respective sets as well. In the following we will discuss the set-
theoretical relation for one notion of matching (namely, intersection match)
as an example; we summarize all notions of matching in Table 6.1 on page
104.

Example: Intersection Match

We provide a detailed discussion for the case where there exist common el-
ements in goal and Web service descriptions. In this case the set of relevant
objects that are advertised by the service provider and the set of relevant ob-
jects for the requester have a non-empty intersection, i.e., there is an object
that is relevant for both parties. In a sense, this criterion can be seen as the
weakest possible criterion for semantic matching in the set-based modeling
approach.

Let us consider the goal in Listing 6.1 and the Web service in Listing 6.2.
The Web service can be used to request the price of a product as well as to buy
buy a product. Recall that concepts in ontology represent sets of instances.
One can verify that the sets of instances of the concepts GenericProductStore-

Service and RetrievePriceInformationMedia potentially intersect, i.e., it is possible
that object is an instance of both concepts. Therefore, there is an intersection
match between the goal and the service.

We now how an intersection match should be interpreted, depending of
the intentions of the goal and the Web service.



6.2 Set-Based Web Service Description 103

namespace { ”http://example.org/”,
tasks ”http://example.org/ontologies/tasks/”}

goal GetPriceInformation
annotations

dc#description hasValue ”Describes the desire of getting price information of any multi
media product”

endAnnotations
importsOntology PriceInformation
capability RetrievePriceInformationMedia

ontology PriceInformation
importsOntology { ”http://example.org/ontologies/tasks/Tasks”, ”http://example.org/

ontologies/products/MediaProducts”}
concept RetrievePriceInformationMedia subConceptOf tasks#RetrievePriceInformation

forProduct impliesType media#MediaProduct

Listing 6.1. Goal for retrieving price information

namespace { ”http://example.org/”,
tasks ”http://example.org/ontologies/tasks/”}

webService GenericProductStoreService
annotations

dc#description hasValue ”Describes a shop offering information about products and there
prices ”

endAnnotations
importsOntology PriceInformation
capability GenericProductStore

ontology GenericProductStoreOntology
importsOntology { ”http://example.org/ontologies/tasks/Tasks”, ”http://example.org/

ontologies/products/Products”}
concept GenericProductStore
axiom definedBy

forall ?object (?object memberOf GenericProductStore equivalent
(?object memberOf tasks#RetrievePriceInformation or ?object memberOf tasks#Buy)).

Listing 6.2. Web service offering price information and buying functionality

• IG = ∀, IW = ∀: The service requester wants to get all of the objects
and the service provider claims that the Web service is able to deliver all
the objects specified. In this case, the requester needs can not be fully
satisfied by the service. However, the service can contribute to meeting
the requirements of the client. Thus, we consider this case a partial match.

• IG = ∃, IW = ∀: The service requester wants to get some of the objects,
whereas the service provider claims that the Web service is able to deliver
all the objects specified. In this case, the requester needs are fully covered
by the Web service. The requester might as well receive objects which are
not relevant for him. We consider this case match.

• IG = ∀, IW = ∃: The service requester wants to get all of the objects,
whereas the service provider claims that the Web service is able to deliver
only some of the objects specified. In this case, the requester needs are
not fully covered. We are even not able to determine whether the service



104 6 Functional Description of Services

IW = ∀
IG= ∀

IW = ∀
IG= ∃

IW = ∃
IG= ∀

IW = ∃
IG= ∃

G = W Match Match Partial Match Match

G ⊆W Match Match Possible Match Possible Match
G ⊇W Partial Match Match Partial Match Match

G ∩W �= ∅Partial Match Match Possible Partial MatchPossible Match

G ∩W = ∅ Non-match Non-match Non-match Non-match

Table 6.1. Set-theoretic criteria, intentions, and our intuitive understanding of
matching

actually can deliver any of the objects desired by the requester and hence
we consider this a possible partial match.

• IG = ∃, IW = ∃: The service requester wants to get some of the objects
and the service provider claims that the Web service is able to deliver some
of the objects specified. In this case we have a possible match.

For a complete discussion of all possible matches we refer the reader to [82].
However, given the discussion for the case of an intersection match, it is
straight-forward to apply it to the remaining cases. In the next subsection
we give a brief summary of all possible combinations.

Summary: Understanding of Matching

Given some goalG and some Web serviceW , Table 6.1 summarizes the discus-
sion and shows under which circumstances the presence of which set-theoretic
relationship between G and W is considered as a match, a partial match, a
possible match, a possible partial match or a non-match.

In earlier Description Logic-based approaches to service discovery (e.g.,
[114, 94]) the notion of “intention” was not been reflected explicitly. As we
have shown above, intentions capture an important aspect of goal and Web
service descriptions and affect essentially the situations in which certain set-
theoretic criteria represent our intuitive understanding of matches.

We believe that certain combinations of intentions will occur more often in
practice than others: Web service providers for example have a strong interest
in their Web services being discovered. If we compare the number of possible
matchings with a given goal under existential and universal intentions, it
seems most likely that providers tend to use universal intentions, even if the
description does not necessarily model the actual functionality of the service
accurately and promises too much. However, if a service provider wants to be
more accurate with his Web service description then in many situations he
would have to use the existential intention.

For service requesters (in particular in an e-Business setting) we expect
that the existential intention will suffice in many situations, however the re-
quester has the freedom to express stronger requests than existential goals



6.2 Set-Based Web Service Description 105

(using the universal intention) if he needs to and thus get more accurate re-
sults in these situations.

6.2.3 Consistency of Descriptions

What we have not considered so far is the possibility of inconsistent goal or
Web service descriptions. In our situation, a set-based capability is inconsis-
tent if it is necessarily interpreted as the empty set – that is, the concept
representing the capability does not have instances in any model of the task
ontology. Clearly such descriptions are not desirable: a requester who is ask-
ing for nothing and Web services that do not deliver anything are simply
superfluous and undesired. Nonetheless, inconsistent descriptions might oc-
cur in cases where the descriptions are complex or refer to several complex
ontologies which are not themselves designed by the modeler.

Additionally, when just being ignored they can have an undesired impact
on matching and thus discovery: Consider for example an inconsistent goal
description, i.e., G = ∅. If we check G for matching Web services using the
Plugin-criterion, i.e., G ⊆W , then obviously every Web service matches. For
a user (who is not aware that his description is inconsistent, since otherwise
he would usually not pose the query) the result would seem unintuitive and
even incorrect because all checked services actually will match.

Checking for inconsistent goal and Web service descriptions is not a task
that is only applicable at the design time. It is of course good practice to is
allow creating an inconsistent description, but consistency does not depend
exclusively on the description itself; it also depends on the ontologies the
description refers to. Hence, changes to such ontologies potentially lead to in-
consistent descriptions. Moreover, since Web service and goal description may
refer to different ontologies, their combination (necessary when performing
matchmaking) may make a previously satisfiable goal description unsatisfi-
able. Thus before checking for a match the satisfiability of each description
involved must be checked.

6.2.4 Ranking Matches

As shown in Table 6.1, we basically have for each pair of intentions for a
goal and a Web service several formal criteria that capture actual matches,
partial matches, possible matches, and non-matches. According to elementary
set-theory the single criteria are not completely separated, but the following
interdependencies hold. Notice that in some cases we require descriptions to
be non-empty as discussed before.

G = W ⇒ G ⊆W
G = W ⇒ G ⊇W

G ⊆W,G �= ∅ ⇒ G ∩W �= ∅
G ⊇W,W �= ∅ ⇒ G ∩W �= ∅



106 6 Functional Description of Services

That means that certain formal set-theoretic criteria that we consider here
are stronger notions than others: if the stronger relationship holds than the
weaker relationship must hold as well. These properties induce a partial order
on the set-theoretic criteria:

(G = W ) � (G ⊆W ), (G ⊇W ) � (G ∩W �= ∅)

Given a goal and a Web service description let “subsumes match” be the
criterion that captures the actual match, then a weaker criterion, such as “in-
tersection match” does also hold. However one has to note that the stronger
criterion provides additional knowledge about the relationship between goal
and Web service. In this particular example a “subsumes match” also guaran-
tees that no objects are delivered besides the one requested, since this property
might be important for a requestor, it does make sense to allow the use of a
particular criterion for the matching between goal and Web service descrip-
tions by the requestor. A service requester basically can exploit this property
during a discovery process in order to ensure certain convenient properties
from the discovered Web services.

To sum up, we have seen that there are cases where a client could benefit
from exploiting the additional semantics captured by matching criteria that
are stronger that the weakest match. Hence, it makes sense to not only al-
low a request to demand a match (i.e., at least the weakest criterion to be
fullfilled), but also to allow to specify the exact criteria and thus raise the
semantic requirements that are captured by the criterion. In particular this
makes sense for the case that a client does not want to accept that a Web
service potentially delivers objects that have not been explicitly requested (in
this case a subsumes or an exact match has to be requested).

We have seen as well that in our general framework there is only one
such additional property that actually can be considered as useful, namely
the property of a Web service to not deliver objects that are irrelevant to the
user. This leads us to allow the client to specify what particular kind of match
he is accepting, by specifying the following three dimensions:

• Intention of the goal
• match, partial match, possible partial match, possible match
• within each match it can be additionally specified if a service is allowed to

deliver objects that are not requested.

Partial Order on “Match”

Similar to the partial order that is defined for the basic set theoretic matching
criterion, we can also define a logically order on our intuitive understanding
of the matching notion.

Match � PartialMatch,PossibleMatch � PossiblePartialMatch



6.3 State-Based Web Service Description 107

IW = ∀ IW = ∃
additional
objects

no additional
objects

additional
objects

no additional
objects

IG = ∀ Match G ⊆ W G = W –
IG = ∃ Match G ∩W �= ∅ G ⊇W G ⊇W G ⊇W

IG = ∀ Partial Match G ∩W �= ∅ G ⊇W G ⊇W G ⊇W

IG = ∃ Partial Match G ∩W �= ∅ G ⊇W G ⊇W G ⊇W

IG = ∀ Possible Match G ⊆ W G = W G ⊆W –

IG = ∃ Possible Match G ∩W �= ∅ G ⊇W G ∩W �= ∅ G ⊇W

IG = ∀ Possible Partial Match G ∩W �= ∅ G ⊇W G ∩W �= ∅ G ⊇W

IG = ∃ Possible Partial Match G ∩W �= ∅ G ⊇W G ∩W �= ∅ G ⊇W

Table 6.2. Formal criteria for checking degrees of matching

The partial ordering can be exploited during matchmaking: in order to ensure
that a property is satisfied when matching (e.g., IG = ∃, IW = ∀ and addi-
tional objects might be delivered), the discovery component has to apply only
the weakest criterion still fulfilling the request. In the given example it is only
required to check for an intersection match (G ∩W �= ∅) and not for all set
theoretic relation separately. Table 6.2 represents the result of this discussion
for all possible combinations. Matching criteria that are colored gray in the
table indicate that the criterion does in fact not check the intuitive matching
criteria specified (e.g., partial match or match), but one which also satisfies the
requested criteria due to the partial order on the intuitive matching notions.

Matching in the set-based framework for Web service discovery is based on
rather simple semantic annotations and thus can provide only limited guar-
antees on the actual accuracy of the results: A detected match between a goal
and a Web service actually does not ensure that the Web service can really
fulfill the user requirements depicted in the goal, since important information
that affects this possibility is not specified in the descriptions; e.g., the re-
quester’s ability to satisfy the requirements of the Web service when invoking
and interaction with the service, namely the pre-conditions as well as a pre-
scribed choreography. In the next section we will present a model that allows
to capture the relation between pre- and post-state.

6.3 State-Based Web Service Description

This section presents a model that allows a more precise definition of the
functionality of a Web service, i.e., state-based capabilities. The model itself
is independent of any specific logical formalism. In general the model can be
formally represented in various logics of sufficient expressivity – for example,
different WSML variants – to enable reasoning with semantic descriptions of
Web service capabilities. We will illustrate the model in an intuitive fashion,
for the formal definitions we refer to [82].



108 6 Functional Description of Services

. . .
concept CreditCard

hasNumber ofType xsd#integer
hasSecurityCode ofType xsd#integer
hasExpiryDate ofType xsd#date
hasOwner ofType Client
hasLimit ofType xsd#decimal

relation creditCardCharge(ofType CreditCard, ofType xsd#decimal, ofType xsd#dateTime)

axiom noChargeBeyondLimit
definedBy

!− creditCardCharge(?creditCard , ?charge, ?date) and
?creditCard [hasLimit hasValue ?limit ] memberOf CreditCard and
?charge>?limit.

. . .

Listing 6.3. Excerpt from the commerce domain ontology

6.3.1 Abstract State Spaces

We consider the world as a set of entities that change over time. Entities
that act in the world - which can be anything from a human user to some
computer program - can affect how the world is perceived by themselves or
other entities at some specific moment in time. At any point in time, the world
is in one particular state that determines how the world is perceived by the
entities acting therein. We need to consider some language for describing the
properties of the world in a state. In the following we assume an arbitrary (but
fixed) signature Σ that is based on some domain ontologies, and a language
L(Σ).

Although the concept of ontologies has been already introduced we include
a small excerpt of a commerce ontology in Listing 6.3 to illustrate a signature
expressed in WSML. Within the listing we define the concept of an credit
card and that no charge can be made that is beyond the credit card limit.

In the context of dynamics and properties of the world that can change,
it is useful to distinguish between symbols in Σ that are supposed to have
always the same, fixed meaning (e.g., ≥, 0) and thus can not be affected by
any entity that acts in the world, and symbols that can be affected and thus
can change their meaning during the execution a Web service (e.g., memberOf,
hasValue). We refer to the former class of symbols as static (denoted by ΣS)
and the latter as dynamic symbols (denoted by ΣD).

Abstract State Spaces

We consider an abstract state space S to represent all possible states s of the
world. Each state s ∈ S completely determines how the world is perceived
by each entity acting in S. Each statement φ ∈ L(Σ) of an entity about the
(current state of) the world is either true or it is false. We consider classical
logic (and thus only true and false as truth values) here. However, the pre-
sented model can be used as it is in the context of non-classical logics (e.g.,



6.3 State-Based Web Service Description 109

. . .
instance myVisaCard memberOf CreditCard

hasNumber hasValue 4444111122223333
hasLimit hasValue 2000,00

relationInstance creditCardCharge(myVisaCard, 100, dateTime(2007, 1, 1, 12, 19, 10))
. . .

Listing 6.4. Possible state in an abstract state space

WSML-Rule) by considering a restricted class of models I, e.g., stable models
in the case of WSML-Rule. A state s ∈ S in fact defines an interpretation I
(of some signature Σ). However, not all Σ-Interpretations I represent mean-
ingful observations since I might not respect some “laws” that the world S
underlies, e.g., that a credit card charge may not exceed the credit cards limit.

These laws are captured by a background ontology Ω ⊆ L(Σ) as for ex-
ample in Listing 6.3. Listing 6.4 illustrates some meaningful observations ac-
cording to our background ontology.

Changing the World

By means of well-defined change operations, entities can affect the world
through state transitions over S. In our setting, these change operations are
single concrete executions of Web services W . Following [82], a change oper-
ation is represented by a service S that is accessed via a Web service W . The
transition is achieved by executing W with some given input data i1, . . . , in
that determine the concrete service execution S, i.e., S ≈W (i1, . . . , in).

Given some input data i1, . . . , in, the execution of a Web service essentially
causes a state transition τ in S, transforming the current state of the world
s ∈ S into a new state s′ ∈ S. A transition τ will in general not be an
atomic transition τ = (s, s′) ∈ S × S but a sequence τ = (s0, . . . , sn) ∈ S+,
where s0 = s, sn = s′ and n ≥ 1. Intermediate states can be useful if it is of
interest to express invariants that must hold throughout an entire execution.
Similarly intermediate states might be important when describing long-lasting
transactions. However, for the purpose of functional descriptions we envision
that it is not necessary to model those intermediate steps, since they are
generally not of interest during analysis or use of capability descriptions. In
the context of our model we describe the functionality of a Web service by
the pre-state (s) and the post-state (s′). More fine grained statements about
a service can be described using choreographies as detailed in Chapter 7.

Outputs as Changes of an Information Space

After the execution of a Web service, it can send some information as output
to the requester. We consider these outputs as updates of the so-called infor-
mation space of the requester of a service. The information space is a part of
the state.



110 6 Functional Description of Services

. . .
instance myVisaCard memberOf CreditCard

hasNumber hasValue 4444111122223333
hasLimit hasValue 2000,00

relationInstance creditCardCharge(myVisaCard, 100, dateTime(2007, 1, 1, 12, 19, 10))
. . .

Listing 6.5. Statements describing a particuar information space

Taking up our background ontology including the credit card we can model
the output of an online purchase using transaction status and some id that
uniquely identifies the transaction, as illustrated by the instance depicted in
Listing 6.5.

Observations in Abstract States

Our aim is to describe all the effects of Web service executions for a requester.
Obviously, a requester can observe in every state s ∈ S related properties
represented by statements φ in L(Σ) that hold in s. Additionally, he can
perceive the information space, as described above. The abstract state space
S in a sense “corresponds” to the observations that can be made, both in
the information space and the “real world”. Consequently, we represent the
observations related to a state s by an observation function ω, which assigns
a Σ-interpretation I to every state s ∈ S. We denote that part of I concerned
with the real world by ωrw(s) and the part concerned with the information
space by ωis(s). However, we require the observation function ω to be a (fixed)
total function as it can not be arbitrary. This means that the observations ω(s)
of any entity are well-defined in every abstract state s.

Web Service Executions

Given some input i1, . . . , in, a Web service execution induces a state transi-
tion (ω(s), ω(s′)) that can be observed by the service requester. However, not
all such transitions of abstract states represent meaningful state transitions
caused by a Web service execution. For a transition to faithfully represent
some service execution we need to require that between the states s and s′

some change can be observed by the invoker. We need to require some further
constraints on the transition such that we can interpret s, s′ as a possible run
W (i1, . . . , in) of a Web service W , as we will discuss below. We call s the
pre-state of the execution and s′ the post-state of the execution.

Returning to our running example we illustrate in Listing 6.6 pre- and
post-states by looking at how the statements relating to a single credit card
might evolve during a simple online purchase.



6.3 State-Based Web Service Description 111

. . . //statments in s
instance myVisaCard memberOf CreditCard

hasNumber hasValue 4444111122223333
hasLimit hasValue 2000,00

. . .

. . . //statments in s’
instance myVisaCard memberOf CreditCard

hasNumber hasValue 4444111122223333
hasLimit hasValue 1900,00

relationInstance creditCardCharge(myVisaCard, 100, dateTime(2007, 1, 1, 12, 19, 10))
. . .

Listing 6.6. State transition of a bank transfer Web service

Web Services

A Web serviceW then can be seen as a set of executionsW (i1, . . . , in) that can
be delivered by the Web service in any given state of the world to a requester
when being equipped with any kind of valid input data i1, . . . , in. However,
in order to keep track of the input data that caused a specific execution, we
need to represent a Web service in terms of a slightly richer structure than a
set, namely a mapping between the provided input values i1, . . . , in and the
resulting execution W (i1, . . . , in). This implies that we use a deterministic
model for Web services here.

The corresponding Web service to our running example would be a pay-
ment service offered by a credit card company to a particular online shop
that takes as input a credit card number, a expiration date and the amount
to be charged. For all valid credit cards (given a sufficient initial limit) it will
charge the amount requested to the card. Thus the actual Web services corre-
sponds to a set of state transitions (and not only one), where each transition
is determined by the concrete input values supplied.

Figure 6.2 illustrates the presented model. The Web service W provides
three different concrete services, each of them having different pairs of input.
Every single state is determined by the two components of ω - the information
space and the real world. The Web service is a set of possible transitions that
is denoted by a dark green area inside the abstract state space.

The model presented gives a thorough mathematical model. For the formal
definitions of this model we refer to [82]. For the purpose of this book the
previous intuitive description should suffice. It is important to understand
that this model is defined in order to allow an unambiguous interpretation
of Web service and goal descriptions, i.e., that it provides a semantic to the
syntactical description within a capability. In the following we outline some
basic semantic analyzes that can be performed on top of this model.



112 6 Functional Description of Services

Fig. 6.2. Abstract model of Web services

namespace ”http://example.org/”

webService creditCardCharge
importsOntology ”http://example.org/ontologies/commerce/Commerce”
sharedVariables {?creditcard ,?amount}
capability

precondition
definedBy

?amount > 0 and
?creditcard memberOf CreditCard

effect
definedBy

creditCardCharge( ?creditcard , ?amount, ?date)

Listing 6.7. A non-realizable credit card payment service

6.3.2 Semantic Analysis of State-Based Web Service Descriptions

For demonstrating the suitability of the proposed model, this section shows its
beneficial application for semantic analysis of functional descriptions. Based
on our model-theoretic framework, we can carry over several semantic stan-
dard notions from mathematical logic [52, 58] that refer to formal descriptions
and are based on the model notion to our particular context in a meaningful
way.

Realizability

We can now define realizability of a description as the corresponding notion
to satisfiability in WSML ontologies. A set of formulae is satisfiable if it has
a model, i.e., if there exist an interpretation of the formulae that is true. The
very same notion can be applied to Web services. Consider Listing 6.7, which
contains the functional description of a Web service for credit card processing.



6.3 State-Based Web Service Description 113

webService creditCardCharge
importsOntology ”http://example.org/ontologies/commerce/Commerce”
sharedVariables {?creditcard ,?amount}
capability

precondition
definedBy

?amount > 0 and
?creditcard [hasLimit hasValue ?limit ]memberOf CreditCard and
?amount < ?limit.

effect
definedBy

creditCardCharge( ?creditcard , ?amount, ?date)

Listing 6.8. A realizable credit card payment service

At a first glance, the given description seems to be implementable within
some Web service. However, taking a closer look at the domain ontology
(cf. Listing 6.3) it becomes clear that this is not the case. The ontology de-
fines that a charge might not exceed the limit of a particular credit card.
Nonetheless the pre-condition does not prevent the amount being greater the
the credit card limit.

Let us assume that there is a Web service realizing this description. When
considering an input binding where the amount (?amount) is greater then the
limit (?creditcard[hasLimit hasValue ?limit]) then the pre-condition is satis-
fied and thus the post-condition should hold in the final state of the respective
execution is reached. However, this is inconsistent with the domain ontology
since the charge would exceed the credit card limit. This is a contradiction
and shows that no Web service exist that can adhere to above descriptions
for all possible input bindings. To fix the description such that it becomes
realizable, we need to extend the pre-condition, as illustrated in Listing 6.8.

The example illustrates the usefulness of the notion of realizability. It
provides a tool for detecting functional descriptions that contain flaws that
might not be obvious to the modelers. It is shown in [82] how the problem
of realizability of a Web service description D ∈ F can be reduced to a well-
understood problem in L for which algorithms already exist.

Functional Refinement

Similar to the notion of satisfiability we can look at the notion of logical
entailment, which is usually defined as follows: An formula φ logically entails
a formula ψ iff every interpretation I which is a model of φ (i.e., I |=L φ)
is also a model of ψ. Substituting interpretations by Web services, formulae
by functional descriptions and the satisfaction |=L by capability satisfaction
|=F . In a similar way we can define the notion of functional refinement that
corresponds to the notion of logical entailment: We use D1 � D2 to denote
that description D1 is a functional refinement of description D2 in A.

Intuitively speaking, D1 � D2 means that D1 is more specific than D2:
Every Web service (no matter which one) that provides D1 can also provide



114 6 Functional Description of Services

...
precondition

definedBy
...
?product memberOf mediaproduct#MediaProduct
...

effect
definedBy

...
commerce#creditCardCharge(?creditcard,?price,?date) and
forall ?product,?entry (?products[hasEntry hasValue ?entry] and

?entry [hasProduct hasValue ?product] implies
commerce#productDelivery(?product, 1, ?address,?dd)).

...

Listing 6.9. Excerpt of the mediaShoppingCapability

D2. In other words, D1 must describe some piece of functionality that always
fits the requirements D2 as well. However, Web services that provide D2 do
not have to satisfy D1 and therefore, a Web service that provides D1 can do
something more specific than required by D2.

As an example, consider the excerpt of the mediaShoppingCapability in List-
ing 6.9. Using our formal definition we can examine another definition and
check if it is a functional refinement of the previous description. Let us assume
a second Web service has an identical capability, however the pre-condition is
slightly broader, instead of requiring a MediaProduct the product only needs
to be an instance of Product. The first Web service has a more specific pre-
condition, thus every Web service fulfilling the second service automatically
fulfills the first Web service.

This notion can beneficially be applied within functionality-based match-
making. With the knowledge about the refinement a repository of services can
be pre indexed to ease discovery at runtime.

Discovery

We can use our model for discovery through checking functional refinement by
looking for Web services that guarantee certain postconditions and/or effects.
For instance, let us assume that some Person wants a particular CD shipped
to his home. Since a CD is a media product we can infer that he can use both
Web services presented.

To conclude this chapter we briefly summarize the set-based and state-based
approaches. The set-based approach has in particular the following advantages

• This modeling approach is based on a very simple and intuitive perspective
of the world where everything is considered in terms of sets (or concepts)

• In opposite to other approaches we start from building a model and an-
alyzing the intuitive understanding of a match and then try to capture
the intuitive semantics of match. This results in giving the modeler more
freedom to express his/her desire, e.g., through the use of intentions.



6.3 State-Based Web Service Description 115

• The approach represents a general framework which does not fix the lan-
guage to be used for describing goals and Web services. In particular, it
allows in general description which are not possible to express using De-
scription Logics and thus provides increased expressiveness.

• Because of the same conceptual modeling style, this approach potentially
allows a seamless integration of descriptions formalized in different lan-
guages, such as present in the WSML Family of languages.

Nevertheless it has to be noted that this approach does not capture the
actual relation between service input and the corresponding outputs. Thus,
the semantics of a Web service is only described in a conceptual manner.
In fact, this can be too coarse-grained for enabling the automation of the
discovery and later execution of a service.

The state-based description of Web services a more fine grained model to
describe Web service descriptions. It requires significant skills to write those
descriptions, but allows to capture a great deal of the functionality of a real
world Web service. Still the model has some limitations about what can be
expressed or captured:

• Only finite processes can be described. A specific limitation of pre- and
post-condition style descriptions is that they are based on the assumption
that there will be a final state of a computation, i.e., the computation ter-
minates. Although, this might be a valid assumption for a wide variety of
Web services, it does not allow the specification of non-terminating com-
ponents which nonetheless deliver meaningful functionality. An example in
a technical system would be an operation system of a computer which does
not terminate or a Web service that implements a clock and periodically
sends a the current time to a subscribed clients.

• Statements about intermediate states. Like in common specification frame-
works, our model for the semantics of Web services considers a Web service
as a set of atomic state-changes, i.e., possible intermediate states during
an execution of a service are invisible for an external observer and can not
be referred to in a formal specifications. For planing purposes it might be
relevant or useful to allow to describe services in a more detailed way, for
instance as a constraint on possible execution paths. For the same reason,
it is not possible to express properties which do hold during the whole
execution of the service, which have been studied in Dynamic Logics in
the context of throughout modalities.

• Message format and order. We do not describe interface details such as
the message format or the order of messages and thus even if the model
is capable of automatically determining which service does semantically
match, it does not provide guarantees on the syntactic level. Those could
potentially be resolved by mediators as presented for example in [106].

In this chapter we have seen two means for describing Web service func-
tionality: set-based and state-based capabilities, and associated discovery



116 6 Functional Description of Services

mechanisms. In the case of set-based descriptions, discovery can be reduced
to checking subsumption of concepts in an ontology (cf. Section 5.2.2). In the
case of state-based descriptions, discovery can be reduced to checking logical
entailment (cf. Sections 5.2.2 and 5.2.3).

A functional description is a somewhat abstract view of a Web service;
it does not capture the behavior of the service. In the following chapter we
describe the WSML choreography language, which allows describing such be-
havioral and interaction patterns.



7

Behavioral Description of Services

Functional descriptions facilitate the process of discovering Semantic Web
services. As we have seen in the previous chapter, they provide a high level
characterization of the underlying service by defining conditions on the input
and output, as well as the state of the world before and after Web service
execution. These conditions correspond to a (single) transition from the pre-
state – the state before execution – to the post-state – the state after execution.

Although this is already a significant step towards automated discovery,
composition and execution of Web services, more detailed descriptions are
needed for the automated usage (invocation) of Web services. In fact, the
typical interaction with a Web service comprises a number of steps, where each
step corresponds to sending or receiving a message. Now, there are different
possible interactions between a requester and a Web service. A description
of all possible interactions is called the behavioral model of the Web service.
It includes such things as the ordering of inputs and outputs and conditions
governing the exchange of messages.

Behavioral models are of special significance in the context of Business
Process Integration, which is the controlled sharing of data and business
processes among connected applications and data sources within an enter-
prise and between trading partners [105]. Business Process Integration occurs
in a number of different contexts. For example, (1) exchanging business doc-
uments, (2) integrating applications in an enterprise, and (3) establishing re-
lations with new business partners. Behavioral models play an important role
in all of these contexts, but most significantly in the latter. By checking the
compatibility of the behavioral models of two Web services one can determine
whether they can potentially interact [100, 23, 101].

Compatibility of the behavioral models of two agents (e.g., service re-
quester and provider) implies that they can interact. However, this does not
yet say how messages are sent between the agents, or how the data is for-
matted Specifically, when invoking a Web service it must be clear how data
– that is, instances of ontological concepts and relations – are sent over the
wire using, for example, XML and XML Schema. The mechanism used for



118 7 Behavioral Description of Services

encoding data as messages to be sent over the wire is called grounding. Before
sending messages, instances of concepts and relations have to be lowered to
XML. Conversely, when receiving messages, the enclosed XML has to be lifted
to ontology instance data.

The behavioral model as well as the Web service grounding are found in the be-
havioral description of a Web service (cf. Section 4.1.3). Recall that in WSML
a behavioral description is called a choreography, which can be seen as a re-
finement of Web service capability, exposing additional details about the Web
service. In this chapter we describe the model and language for WSML chore-
ographies, also called the WSML choreography language. It should be noted
here that WSML also allows referring to different choreography descriptions
(possibly using a different language), as described in Section 4.4.5.

The behavioral model of the WSML choreography language is based on
evolving ontologies, where each subsequent state corresponds to a change in
the instance data of an ontology. The model is inspired by evolving algebras,
which are also known as Abstract State Machines [71, 24]. The behavioral
model is outlined in Section 7.1.

In Section 7.2 we extend the introduction of the choreography language
in Section 4.4.5 with a more detailed description of the various language con-
structs. We proceed with a more formal definition of the language and its
semantics in Section 7.3.

As we remarked above, there is a close relationship between functional
and behavioral description of the service, the latter being a refinement of the
former. We describe the relationship between the functional descriptions, as
described in the previous chapter, and behavioral description, as described in
this chapter, in Section 7.4.

The WSML choreography language is based on the “Ontology-based Choreog-
raphy of WSMO Services” [122], which was originally developed in the context
of WSMO.

7.1 Behavioral Model of Choreographies

The interaction between a requester and a Web service consists of a number
of interaction steps. These steps consist of sequences of message exchanges
(whereby a single message exchange is normally equivalent to a single interac-
tion step) during which the knowledge in the involved parties (i.e., the client
and/or provider) is updated.

Generally, a choreography does not offer a single way on how it can be
interacted with, but there are often multiple ways. Think of, for example,
an online store Web service that can be used both for searching and buying
products. Due to the information received by the provider from the requester,
the Web service might act in different ways. For example, if a particular client



7.2 Overview of the WSML Choreography Language 119

has a discount voucher, this has be taken into account during the calculation
of the invoice.

Deciding for one course of action (e.g., searching) or the other (e.g., sell-
ing), based on available information (e.g., input message) is called conditional
branching: the path followed in the interaction depends on whether some con-
dition holds. Other forms of branching typically occur during error handling
procedures – for example, checking the validity of a credit card. Since we
are in the Semantic Web context, in all of the above cases messages are in-
stances of concepts or relations defined in some ontology. The same ontology
is typically used to describe the various aspects of a Web service, including
non-functional, functional, and behavioral description.

Based on the above considerations, the model underlying WSML chore-
ographies follows the following principles:

Abstract: it hides details regarding the underly message exchange protocols
and message formats

State-based: the interactions are described in the form of state transitions
Expressive: it allows describing features such as sequences of message inter-

actions and branching
Ontology-based: ontologies are the underlying data model for message ex-

change

As mentioned in the introduction, the model underlying WSML choreogra-
phies is that of evolving ontologies. The state of an interaction is represented
as instance information of an ontology. Transition rules govern updates of the
state; such an update is a state transition.

In the following section we describe how this model is realized in the
WSML choreography language.

7.2 Overview of the WSML Choreography Language

We now describe the WSML choreography language in more detail using a
running example. The example illustrates a simple process of purchasing a
media item from an online store. The client starts by sending a search request
for the particular item. If the item is available, a confirmation is returned with
details concerning the item. The client can then update the cart and finally
issue an order request comprised of the item and credit card details. Once
a confirmation of the transaction is sent, the client sends a shipping request
with the destination address; the service returns an invoice. We show here a
part of this example, namely the addition of items to a particular cart.

Recall from Chapter 4 that choreographies are part of an interface of a
goal or Web service. See Listing 4.4 on page 51 for an example of an inter-
face description with a choreography. Furthermore, choreographies are based
on evolving ontologies, with transition rules governing state transitions. The



120 7 Behavioral Description of Services

choreography buyChoreography
annotations

dc#title hasValue ”Multimedia Shopping Service Choreography”
dc#description hasValue ”Describes the steps required for shopping multimedia items

over this web service ”
endAnnotations

stateSignature buyStateSignature

transitionRules buyTransitionRules

Listing 7.1. The “Buy” choreography of the media shopping service

references to the ontologies are included in the stateSignature. The rules are
written in a transitionRules block. See Listing 7.1.

The state signature declares a set of imported ontologies using the im-

portsOntology keyword and a set of modes that are associated with concepts
and/or relations. The imported ontologies contain the initial set of facts avail-
able to the choreography. The modes declare the intention of the instance data
of concepts and relations, and may be of the following types:

static meaning that the extension of the concept or relation cannot be
changed; this is the default for all concepts and relations imported
by the signature of the choreography,

in meaning that the extension of the concept or relation can only be
changed by the requester; a grounding mechanism for this item
that implements write access for the requester must be provided,

out meaning that the extension of the concept or relation can only
be changed by the service; a grounding mechanism for this item
that implements read access for the requester must be provided,

shared meaning that the extension of the concept or relation can be
changed and read by the choreography instance and the client;
a grounding mechanism for this item, that implements read and
write access for the requester and the service must be provided,
or

controlled meaning that the extension of the concept is changed and read
only by the service.

Listing 7.2 shows part of the state signature of the buy choreography in
our example. It includes the (optional) state signature identifier and a set
of annotations. Following the annotations, the imported ontologies and the
modes of concepts and relations are declared. In general, the state signature
should at least import all the ontologies defining the concepts and relations
that are assigned a mode. For conciseness, we restrict ourselves to the in and
out modes in the example.

The listing shows that the AddToCart concept is assigned the in mode and
the Cart concept is assigned to the out mode. Both of these concepts are defined



7.2 Overview of the WSML Choreography Language 121

stateSignature buySignature
annotations

dc#title hasValue ”Buy State Signature”
dc#description hasValue ”The State Signature of the buy interface for the media

shopping service . In this case , only two types of modes are used, namely ’ in ’
and ’out ’. All concepts and relations that belong to these types are attached to
a link specifying the grounding.”

endAnnotations

importsOntology {
”http://example.org/ontologies/tasks/ShoppingTasks”,
”http://example.org/ontologies/commerce/Commerce”

}

in
shoptasks#AddToCart withGrounding
”http://example.org/webservices/shopping/mediashoppingservice#wsdl.

interfaceMessageReference(MediaShoppingServicePortType/AddToCart/In)”,

out
commerce#Cart withGrounding{

”http://example.org/webservices/shopping/mediashoppingservice#wsdl.
interfaceMessageReference(MediaShoppingServicePortType/AddToCart/Out)”,

”http://example.org/webservices/shopping/mediashoppingservice#wsdl.
interfaceMessageReference(MediaShoppingServicePortType/RemoveFromCart/Out)
”

}

Listing 7.2. Excerpt from the state signature of the “Buy” choreography

in the ShoppingTasks and Commerce ontologies, respectively; observe that both
ontologies are imported in the state signature. Each mode declaration of type
in must have exactly one grounding information. Mode declarations of type
out can have multiple grounding entries but must have at least one. Note
that the grounding is not necessarily a direct mapping to some XML element;
it might refer to any communication protocol. In the example, the AddToCart

concept is linked to the input message of the WSDL operation AddToCart. The
concept Cart is however attached to the output message of two operations,
namely, AddToCart and RemoveFromCart. This means that the Cart object can
be returned by two different operations.

Transition rules define the behavior of a choreography. Listing 7.3 shows an
example of a transition rule. This transition rule fires when an instance of type
AddToCart is available (the condition in the with part). Due to the fact that
the mode of AddToCart is in, such an instance becoming available corresponds
to receiving a message from the requester. The update part of this transition
rule defines also an if rule. It checks whether the cart exists in the state. If
this is not the case, the cart is added to the state and the updates that follow
from the outer forall rule are performed. In this case, the updates take the
form of an add, meaning that facts are added to the state.

The difference between an if and a forall rule, is that updates (over the
bound variables) in the latter are performed in parallel. The other type of
transition rule is the choose rule, whereby one variable binding out of all



122 7 Behavioral Description of Services

forall ?addToCart
with

(
?addToCart[

hasCartId hasValue ?cartId ,
hasLineItem hasValue ?lineItem

] memberOf shoptasks#AddToCart
and ?lineItem memberOf commerce#LineItem

)
do

if (naf ( exists ?cart
(?cart [

hasId hasValue ?cartId
] memberOf commerce#Cart

)
)

)
do

add(?cart [hasId hasValue ?cartId ] memberOf commerce#Cart)
endIf
add(?cart [hasLineItem hasValue ?lineItem ])

endForall

Listing 7.3. Excerpt from the transition rules of the “Buy” choreography

possible bindings is chosen in a non-deterministic fashion. Furthermore, the
other two forms of updates are delete and update. The former, deletes facts
from the state and the latter updates old values of facts to new ones. The
update rule is a combination of both the add and delete rules.
In the following chapter we formally define WSML choreographies and their
semantics.

7.3 Formalizing WSML Choreographies

The semantics of a choreography is defined in terms of the set of possible
valid choreography runs that are associated with a choreography, given an
initial state. In this section we introduce the semantic notions defined by the
WSML choreography language. We will first give an intuitive description of
the notions used in the semantics definition, as well as the abstract syntax
for WSML choreographies, in Section 7.3.1. We proceed with the definition of
the semantics in Section 7.3.2.

7.3.1 Choreography Language Definition

At the heart of behavioral descriptions are ontologies. They define the basic
set of facts that are accessible by the choreography, the concepts and relations
used by the choreography, and additional constraints that must be maintained
during a choreography run. We denote the set of ontologies imported by a
choreography with O. The variant of O is the highest variant among the
variants of the ontologies in O.



7.3 Formalizing WSML Choreographies 123

instance queen platinum memberOf mediaproduct#MediaProduct
hasTitle hasValue ”The Platinum Collection − Greatest Hits I , II & III ”
hasContributor hasValue queen
hasId hasValue ”B00004Z3AV”
hasPrice hasValue 30.00
hasRating hasValue 5

instance queen memberOf media#Artist
hasStageName hasValue ”Queen”
contributorOf hasValue queen platinum

Listing 7.4. Example of a choreography state

A State is a set of facts. A fact is simply a WSML ground atomic formula,
that is, a formula with no variables. Typically these facts are instances of
WSML concepts such as those in Listing 7.4. Of course, this example shows
a limited number of facts. The ontologies would normally define many facts
which can then be read and updated during the execution of the choreography.
Note that these facts are not necessarily located in a WSML ontology, but
may originate from a (corporate) database.

When one (or more) transition rule(s) fire(s), their execution typically
performs updates on the current state, resulting in a new state. Formally,
these updates are contained in an update set. An update set contains two
distinct sets of updates: a set of add updates and a set of delete updates. The
former contains is the set of facts that are to be added to the current state;
the latter contains the set of facts that are to be removed from the current
state. The two sets are required to be disjoint; i.e., the same fact may not be
added and deleted at the same time. If the situation does occur, the update
is said to be inconsistent and the choreography execution is terminated.

An application of an update set to a state yields the subsequent state. This
new state must be consistent with the imported ontologies O; otherwise, the
choreography execution is terminated. Update sets are inductively associated
with a choreography.

A choreography run is defined as a sequence of states resulting from up-
dates due to the transition rules. Each state must follow from the previous
state and the application of the transition rules, which in turn depends on
the imported ontologies. A run is terminated if one or more of the following
situations occur:

• a state resulting from an update is not consistent with the imported on-
tologies,

• the next state is the same as the current state – in other words, the update
set is empty, or

• an update set is inconsistent.

A choreography run is said to be valid if it is terminated and for each state
in the run the following hold:



124 7 Behavioral Description of Services

• each state is consistent with the imported ontologies
• the current state is not equal to the previous state,and
• for each state there is a consistent associated update set that leads to the

next state.

The terminating state in a valid terminated choreography run is the last
state in the run. A particular state is reachable in some choreography if it
occurs in some valid run. Observe that the start state is always reachable as
long as it is consistent.

One might be interested in verifying whether particular facts result from
some choreography run or from all choreography runs, or whether particular
facts do not change during a run; the latter are called invariants.

If there exists a choreography run with a particular start state that is
valid for some choreography and also valid for another choreography, then the
former choreography is said to be subsumed by the latter. Similarly, a choreog-
raphy is always subsumed by another choreography if for every possible state
in a choreography run with some start state is valid for both choreographies.

A choreography is said to be consistent if there exists at least one valid
run for some consistent start state of the choreography. It is said to be always
consistent if there exists a valid choreography run for every consistent start
state of the choreography.

The semantics of a WSML choreography case is defined in terms of the WSML
abstract syntax. In order to make this section self contained, we review the
necessary elements in the syntax. We consider only those aspects of the def-
inition relevant to the review of the semantics in the next section. We refer
the reader to [29] for a complete definition of the WSML abstract syntax.

We start with the definition of a WSML Choreography, which, for our
purposes, is a tuple 〈signature, rule〉chor, where

• signature is a WSML state signature, and
• rule is a set of WSML transition rules.

A WSML choreography 〈signature, rule〉 conforms with WSML-Core
(resp., Flight or Rule) if for every logical expression in every rule in rule holds
that it does not contain the symbols ¬, ⊃, and ≡.1 A WSML Choreography
conforms with WSML-DL if for every logical expression in every rule in rule
holds that it contains one free variable and its variable graph is tree-shaped.2

Any WSML choreography conforms with WSML-Full.
For our purposes, a WSML State Signature is a tuple 〈ontID, mode〉,
where

• O is a set of imported ontologies, which may be WSML, RDFS, or OWL
DL ontologies and

1 In fact, every such logical expression is an (FOL) query [1].
2 In fact, every such logical expression is a tree-shaped query [39].



7.3 Formalizing WSML Choreographies 125

transitionRules buyTransitions
forall ?search
with

(?search [
hasTitle hasValue ?title

] memberOf shoptasks#SearchCatalog
and exists ?item (

?item memberOf mediaproduct#MediaProduct and(
?item[ hasTitle hasValue ?title ]

) ) )
do

add(?item memberOf mediaproduct#MediaProduct)
delete(?search memberOf shoptasks#SearchCatalog)

endForall

Listing 7.5. A simple transition rule for searching media products

• mode is a set of modes.

The set of imported ontologies O is also the set of imported ontologies
of the containing choreography. A mode is either a concept mode of the form
〈type, conceptID, groundingID〉 or relation mode of the form 〈type, relationID,
groundingID〉, where

• type is one of the symbols static, in, out, shared, and controlled,
• conceptID (resp., relationID) is a concept (resp., relation) identifier, and
• groundingID is a set of grounding identifiers.

Finally, a WSML Transition Rule is one of:

• an if-then rule 〈logExp, rule〉if ,
• a forall rule 〈varID, logExp, rule〉forall,
• a choose rule 〈varID, logExp, rule〉choose,
• a piped rule 〈rule〉,
• an add rule 〈α〉add, or
• a delete rule 〈α〉delete,

where logExp is a WSML logical expression (cf. Section 4.4.4 and Chapter 5)
such that the set of free variables in logExp correspond with varID; rule is a
nonempty set of WSML transition rules ; varID is a set of variable identifiers;
and α is a WSML fact (i.e., a ground atomic formula).

7.3.2 Semantics of WSML Choreographies

This section reviews the semantics of WSML choreographies. As a running
example, we will use the transition rule in Listing 7.5 and a subset of the
initial set of facts available to the choreography in Listing 7.6.



126 7 Behavioral Description of Services

instance queen platinum memberOf mediaproduct#MediaProduct
hasTitle hasValue ”The Platinum Collection − Greatest Hits I , II & III ”
hasContributor hasValue queen
hasId hasValue ”B00004Z3AV”
hasPrice hasValue 30.00
hasRating hasValue 5

instance bohemian rhapsody memberOf mediaproduct#MediaProduct
hasTitle hasValue ”Bohemian Rhapsody”
hasContributor hasValue queen
hasId hasValue ”B0013AEOSU”
hasPrice hasValue 12.00
hasRating hasValue 5

instance queen memberOf media#Artist
hasStageName hasValue ”Queen”
contributorOf hasValue {queen platinum, bohemian rhapsody}

Listing 7.6. Examples of facts available to the choreography

State

A state S of a WSML choreography C is defined as a set of facts, where a
fact is a ground atomic formula. A state S is said to be consistent with a set
of ontologies O iff O ∪ S is satisfiable in the WSML variant of O.

Since a state is a set of facts, any collection of WSML instances (e.g.,
Listing 7.4) can be seen as the description of a state.

Update Set

An update set U is a tuple U = 〈A,D〉 where the add set A and the delete
set D are sets of ground atoms in the variant of O. An update set U = 〈A,D〉
is consistent if A ∩ D = ∅.

An application of an update set U = 〈A,D〉 to a state S, denoted SU , is
defined as: SU = A ∪ S \ D. An update set U is consistent with the state S,
with respect to a set of ontologies O, if U is consistent and SU is consistent
with O.

Example 7.1. Let us consider as an example the search transition rule in List-
ing 7.5 and an initial state S0 which contains the facts in Listing 7.6 and:

myRequest[hasTitle hv“Bohemian Rhapsody”] :SearchCatalog

which is a search request representing a title search for “Bohemian Rhapsody”.
The initial state contains the facts in the background ontology and the

search request. Note that the latter concept is read by the choreography
through the grounding mechanism (cf. the state signature in Listing 7.2).
When the request is read, it becomes part of the state. The formal model
hides these communication details.

The update set of the transition rule adds the respective media products
that match the title “Bohemian Rhapsody” and deletes the search catalogue



7.3 Formalizing WSML Choreographies 127

πC(rule, S) =
⋃

r∈rule

πC(rule, S),

πC(〈α〉add, S) = 〈{α}, ∅〉,
πC(〈α〉delete, S) = 〈∅, {α}〉,

πC(〈logExp, rule〉if , S) =

{
πC(rule, S) O ∪ S |=x logExp,

∅ otherwise,

πC(〈varID, logExp, rule〉forall, S) =

πC(
⋃

{ruleθ|θ is a mapping from the

variables in varID to ground terms and

O ∪ S |= logExpθ}, S),

πC(〈varID, logExp, rule〉choose, S) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

πC(ruleθ, S)

θ is a mapping from
the variables in varID
to ground terms and
O ∪ S |= logExpθ,

∅ otherwise,

where 〈A1,D1〉∪ 〈A2,D2〉 = 〈A1 ∪A2,D1 ∪D2〉, α is an atomic formula, and |= is
the entailment relation of the WSML variant under consideration.

Table 7.1. Definition of associated update sets

request. Although the media products already exist in the state, they are
explicitly added by the rule in order for communication with the client of the
choreography to take place. The add part of the update set consists of one
fact:

〈bohemian rhapsody :MediaProduct〉add

The delete part likewise consists of one fact:

〈myRequest :SearchCatalog〉delete

Applying the update set to the state means that the set of facts in the
add set are added to the state (unless they already exist) and the set of facts
in the delete set are removed from the state. The resulting state contains the
facts in Listing 7.6 and:

〈bohemian rhapsody :MediaProduct〉

The update set depicted in the example is associated with the choreogra-
phy and the initial state S0. We now define formally the notion of associated
update set.

An update set U is associated with a choreography C = 〈O, signature, rule〉
and a state S if U = πC(rule, S), where πC is a mapping from sets of transition
rules and states to update sets as defined in Table 7.1.



128 7 Behavioral Description of Services

Choreography Run

Let C = 〈O, signature, rule〉 be a choreography, let S be a state, and let U be
an update set. A choreography run is a sequence of states R = 〈S0, . . . , Sn〉,
with n ≥ 0. A state S is reachable in R if S = Si for some 0 ≤ i ≤ n. A
choreography run R = 〈S0, . . . , Sn〉 is terminated if there is an update set U
associated with C and Sn such that either

• SU
n is not consistent with O or

• SU
n = Sn

In this case Sn is called the terminating state of R.
Given a consistent start state S0, a choreography run R = 〈S0, . . . , Sn〉 is

valid for a choreography C if S0 is consistent with O, R is terminated, and
for each Si, with 1 ≤ i ≤ n, holds that:

• Si is consistent with O,
• Si−1 �= Si, and
• there is a consistent update set U that is associated with C and Si−1 such

that Si = SU
i−1.

Given a choreography C and a start state S0, a state Si is terminating if there
is a valid choreography run R = 〈S0, . . . , Si〉 for C; Si is reachable if there is
a valid choreography run R for C such that S is reachable in R.

Atomic Formulas

An atomic formula α is possible (respectively, guaranteed) in C, given a start
state S, if α ∈ Si for some (respectively, every) terminating state Si.

An atomic formula α is always possible (respectively, always guaranteed) in
C if for every possible starte state S holds that α ∈ Si for some (respectively,
every) terminating state Si.

Considering Example 7.1, the media product fact is guaranteed if the start
state contains the SearchCatalog instance as depicted in the example.

Subsumed Choreographes

A choreography C1 is subsumed by a choreography C2, relative to a start state
S0, if every choreography run R with start state S0 that is valid for C1 is also
valid for C2. A choreography C1 is always subsumed by a choreography C2,
if for every possible state Si holds that every choreography run R with start
state Si that is valid for C1 is also valid for C2.

As an example, consider the transition rule in Listing 7.5 to be a separate
choreography C1, say a “Search Choreography”. The same transition rule is
also part of a larger choreography “Buy Choreography”. We will call this
choreography C2. Considering the start state S0 in Example 7.1, it is easy to
verify that every choreography run for C1 starting with S0 is a valid run for



7.4 Relating Functional and Behavioral Descriptions 129

C2, since the updates and the next state, determined by the search rule will
be the same for both. However, subsumption does not hold in the converse
direction: C2 might not terminate after the search rule is applied since other
transition rules might fire on the resulting set. Hence, C1 is subsumed by C2.

Consistent Choreographies

A choreography C is consistent given a state S0 if there exists a valid run
R = 〈S0, . . . , Sn〉 for C. C is always consistent if for any consistent state S,
C is consistent given S.

Considering the transition rule in Listing 7.5 to be a single choreography,
then it is easy to verify that the choreography is consistent given the start
state S0 from Example 7.1.

7.4 Relating Functional and Behavioral Descriptions

Although functional and behavioral descriptions are intended to be used for
different purposes, they have some similarities and relationships. Recall that,
in fact, the behavioral description is meant to be a refinement of a functional
description. On the one hand, functional descriptions offer a high-level de-
scription of what the Web service accepts as inputs, what outputs it provides,
and what real-world effects it brings about. On the other hand, a behavioral
description defines the detailed direction, leading from the various inputs pro-
vided that various stages, to the output. In fact, the choreography describes
the intermediate states, which are between the initial and final states of the
service, thereby providing a more fine-grained description the service, from the
point of view of interaction with the requester. It also provides information
about communication protocols that have to be enacted during the execution
of the service.

Note that choreographies, in contrast to capabilities, do not describe as-
pects beyond the informational world, i.e., the service inputs and outputs.

Given that functional and behavioral descriptions are meant for different pur-
poses, it is natural that they rely on different semantics. Consequently, the
formal relationship between capabilities and choreographies is at times hard,
and sometimes impossible to define. Still, they need to be coherent. For exam-
ple, if the functional description says that a particular object is produced by
the service, then it must be ensured that the behavioral description arrives to
a state where this object is actually returned by the Web service. This section
describes these types of relationships and defines – where possible – mappings
between the semantic notions in the functional and behavioral descriptions.

WSML allows using choreography languages other than the WSML chore-
ography language. In such cases, it is up to the modeler to define the rela-
tionship between the model of the choreography language under consideration
and WSML capabilities.



130 7 Behavioral Description of Services

Recall the distinction between set-based and state-based capabilities. In the
set-theoretic approach, a capability is defined as a set of elements; such a set is
represented as a concept in a task ontology. The degree of match between the
requester and the service is determined by how many of these elements they
have in common and on their intentions (see Section 6.2). In the state-based
approach, a capability describes simple state transitions between the pre- and
post-state of the Web service; intermediate states are not considered.

7.4.1 Relationship with Set-based Capabilities

For functional descriptions based on the set-based approach, there exists little
relationship with the behavioral model. One can argue that the elements that
a web service can provide correspond to those elements that are marked as
shared and out in the state signature of the choreography. More precisely,
the union of all the facts that are added in a state during a choreography
run should be a subset or equal to the set of concepts provided by the Web
service. The choreography run is assumed to be valid.
Let F set be a functional description (a capability) of a Web service W with
a set-based semantics; let W set be the set of all elements of functionality
that F set can provide – that is, IF set = ∀ (cf. Table 6.1 on page 104): given
a valid choreography run R = 〈S0, . . . , Sn〉 and a set of add sets

⋃
ASi , a

choreography C subsumes F set (denoted C ⊆ F set) if W set ⊆ ⋃
ASi .

Although this is a limited relationship, it still helps to ensure to have coherent
functional and behavioral descriptions.

7.4.2 Relationship with State-Based Capabilities

The state-based approach to capability description is closer in spirit to the
behavioral model of WSML choreographies. Before describing this relationship
in detail, a comment about the information space and the real world is in order.

Recall that in the state-based approach for functional descriptions (Sec-
tion 6.3), a functional description is defined in terms of Abstract State Spaces.
Each state in such a space comprises two main elements, namely the state of
the information space and the state of the real world. In terms of a capability
description, the information space is described using pre- and post-conditions
and the state of the real world using assumptions and effects. The goal of
behavioral descriptions is to describe the information exchange between the
requester and provider. As such, real world effects are not considered in chore-
ography descriptions. Therefore, when talking about the relationship to func-
tional descriptions, we consider only the information space.

For our purposes, a functional description F state is that there F state =
(pre, post), where pre is the pre-condition and post is the post-condition.
Recall that pre is required to be satisfied by any pre-state s of the service and
post is required to be satisfied by any post-state s′.



7.4 Relating Functional and Behavioral Descriptions 131

One might argue that the pre-state s of a functional description F state

should be equivalent to the initial state S0 of a choreography run R. Similarly,
one can argue that the post-state s′ of F state and the final state Sn of R are
equivalent. This is, however, not a realistic requirement due to the following:

1. It is assumed in functional descriptions that all input data is available prior
to execution of the service. In fact, an execution is defined asW (i1, . . . , in)
where ij is an input. Although the state signature of the choreography
defines all possible inputs that it can handle, it is generally the case that
these are received at different points in time during the execution, i.e., in
different intermediate states of the choreography run. The same argument
applies for the outputs.

2. A goal or a Web service includes at most one functional description, but
may include several behavioral descriptions.

All that said, there is an obvious correspondence between concepts and re-
lations used in capabilities and choreographies, on the signature level. Namely,
all concepts and relations used in the pre- and post-conditions of the capability
should occur in the state signature of at least one of the choreographies of the
goal or Web service. Still, different types of relationships can be semi-formally
defined.

As we have argued above, it is not realistic to impose strict requirements
on the relationship between the functional and the behavioral description of
a goal or service. Nonetheless, there are certain notions of correspondence
potentially useful to authors of functional and behavioral descriptions. We
describe some of these notions in the following. We are concerned with cor-
respondence between the pre- and post-state of a capability with states in a
choreography.

In what follows, we will consider the relationships between the pre-/post-
state(s) of the functional description and the initial/final state(s) of the behav-
ioral description, respectively. The following notation is used in the remainder
of this section:

• A state-based functional description F state is defined as F state = (pre,
post), where pre satisfies any pre-state s and post satisfies any post-state
s′, given the pre-state s. We refer to such a pair (s, s′) as a capability
execution.

• A valid run R of a choreographyC is a sequence of states R = 〈S0, . . . , Sn〉,
where S0 and Sn denote the initial and final state of R, respectively.

We assume in the remainder that every choreography run under consideration
is valid.

We proceed with definitions of three notions of fulfillment : if a choreogra-
phy fulfills a capability, it is a refinement of that capability.



132 7 Behavioral Description of Services

Partial Fulfillment

We first consider the case where the initial and final states of the choreography
partially model the pre- and post-state of the functional description respec-
tively. With partial we mean that there exists some valid run R = 〈S0, . . . , Sn〉
of the choreography C such that the initial state satisfies the precondition and
the final state satisfies the postcondition. That is, at least one possible con-
versation leads to achieving the functionality described in the capability.

Recall that a state in a choreography is a set of ground atomic formulas
and the pre- and post-condition pre and post are formulas with free variables.
A choreography C partially fulfills a capability F state if there is some valid
run R = 〈S0, . . . , Sn〉 of C and some ground variable substitution θ such that
O∪S0 |= preθ and O∪Sn |= postθ, where |= is the entailment relation of the
variant of O.

Complete Fulfillment

A choreography completely fulfills a capability if whenever the start state
satisfies the precondition, the end states satisfies the post-conditions. That
is, every possible conversation that meets the initial requirements leads to
achieving the functionality described in the capability.
A choreography C completely fulfills a capability F state if it partially fulfills
F state and for every valid run R = 〈S0, . . . , Sn〉 of C such that there is some
ground variable substitution θ and O∪ S0 |= preθ, O∪ Sn |= postθ, where |=
is the entailment relation of the variant of O.

The mentioned notions of fulfillment can be used during the development of
choreography and capability descriptions, in order to ensure coherence of the
goal or Web service description.

In this chapter we have defined the behavioral model for WSML choreogra-
phies. This model provides a flexible way to describe transitions between states
during execution and also provides means to link to communication proto-
cols such that the interaction between the requester and the provider can
be enacted. Ontologies are directly supported and handled by the model – a
pre-requisite for modeling Semantic Web services. The relationship between
the behavioral and functional models have also been defined – both with the
set-based and state-based approaches.

The choreography language can be used directly in goal and Web service
descriptions since the entailment notions used to define the semantics of the
language are directly dependent on the particular WSML variant that is used.



Part III

Enabling Technologies for WSML



8

Reasoning with WSML

In computer science, reasoning is commonly understood as the process of
inferring “new” (i.e., not explicitly stated) information about some domain of
discourse from a given (formal) model of that domain. This form of reasoning
is usually called deductive reasoning.

A prominent example is the following: suppose we know that Socrates is
a human being, and that any human being is mortal. Then we can conclude
(or deduce) by logical reasoning that Socrates must be mortal. The first two
statements represent a simple model of a domain (i.e., humankind). The con-
clusion that we derive is not part of the model itself, but instead knowledge
about the domain that is only implicitly reflected in the model.

Reasoning therefore enables us to act intelligently in the following sense:
given an adequate and sufficiently rich model of a domain which is not known
to us, we can infer anything that we could ever observe in the domain by rea-
soning over the explicitly given knowledge about the domain (i.e., the model).
Therefore, we are able to act in the domain, as if we would know the do-
main already. The mechanization of reasoning allows computers eventually
to act in arbitrary, unknown domains in an informed manner, i.e., as if they
would know and understand the domain. Instead of saying that reasoning
makes computers intelligent, we prefer a more modest view and summarize
that reasoning allows computers to be more flexible, if they face situations
which are not covered literally in the control program they follow, i.e., there
is no instruction matching exactly the observations of the agent.

Using a formal language for the modeling of the domain (and hence formal
models) instead of informal languages and models is the key to the mecha-
nization of reasoning. The certainly most prominent examples for formal de-
scription languages in computer science are logics, e.g., propositional logics,
first-order logics, and modal logics [52, 58, 21]. They are usually equipped
with well-understood reasoning algorithms.

WSML is a formal language specifically tailored towards a specific do-
main: the description of semantic aspects of Web services. The mechanization
of reasoning with WSML therefore enables (computerized) agents to discover,



136 8 Reasoning with WSML

invoke and execute services in an automated fashion. Thereby, it supports hu-
mans dealing with large-scale, open, and continually changing service-oriented
architectures by automation of often performed, tedious, and work-intensive
subtasks. Such subtask might be to discover currently available Web services
that are able to achieve a certain client goal, to automatically compose a
complex Web service from a set of simpler Web services which are known to
a Web service repository, or to check if two or more Web services can suc-
cessfully interact with each other (given knowledge about their behavior or
communication model).

WSML allows describing the main conceptual components identified in
WSMO, i.e., ontologies, Web services, goals, and mediators, in a formal way.
Reasoning methods need to be developed for any of these elements and a
variety of reasoning tasks.

In this chapter we will mainly focus on specific component in the concep-
tual model of WSML, namely ontologies. We discuss ontology reasoning and
our enabling technologies in detail. Ontology reasoning is especially interesting
because of its fundamental role in the WSML architecture: any other concep-
tual element makes use of ontologies to capture relevant (static) background
knowledge. Reasoning with the respective descriptions therefore requires al-
ways support for ontology reasoning. Reasoning with formal description of the
other conceptual elements (e.g., functional description of Web services) can
sometimes even be completely reduced to ontology reasoning (See Chapter 6
and [82, 83, 12]).

The chapter is structured as follows: we discuss ontology reasoning in
Section 8.1. We describe a generic framework enabling ontology reasoning
in WSML in Section 8.2. The generic framework is then instantiated and
considered in detail for the main ontology languages in WSML which are of
practical interest, namely for rule-based WSML in Section 8.3 and for DL-
based WSML in Section 8.4.

8.1 Ontology Reasoning

Ontologies [55] provide a static perspective on a world or domain under con-
sideration. They identify the key concepts and entities within a domain, their
features and their interrelation, but they are not concerned with how the
domain changes.

Knowledge-based systems usually distinguish two levels of domain knowl-
edge: factual (or assertional) knowledge describing a specific situation (such
as all products that are stored at present in a warehouse), as well as schematic
(or terminological) knowledge which applies not only to a specific situation
and entity in the domain, but more generally to any situation that we can
observe in the domain. Schematic knowledge therefore reflect general knowl-
edge about our perception of the domain and is often expressed in terms of
if-then rules, e.g., if some entity in the domain is known to be a parent of a



8.1 Ontology Reasoning 137

human being, then it is also known to be a human being. Using an analogy
with database systems, terminological knowledge corresponds to the database
schema, whereas the assertional knowledge corresponds to a database (state).
Schematic knowledge in a knowledge base (or ontology) is sometimes referred
to as a so-called TBox (terminological box), whereas assertional part of a
knowledge based is sometimes called an ABox.

The situation is illustrated in Figure 8.1. Ontologies capture domain mod-
els and represent them formally. The ontologies form altogether a knowledge
base. Ontologies are formulated in terms of a ontology (or knowledge repre-
sentation) language. A reasoning component serves for client applications as
a generic interpreter of the formally represented domain models. These client
applications therefore can exploit the power of knowledge and become more
flexible than hard-wired solutions. In particular, the ontology can be changed
without affecting the reasoning component at any point in time.

Fig. 8.1. A schematic view of knowledge-based systems

In principle, ontologies can represent both kinds of knowledge. However,
they are most often used represent terminological knowledge and are enriched
with situational knowledge by applications on demand, e.g., from specific data-
sources. This allows to reuse ontologies across various applications.

Ontology reasoning can therefore be used for two distinct purposes: on the
one hand, it can be used to analyze and inspect the terminological part of
an ontology (e.g., to derive schematic knowledge about the domain or to find
modeling errors). On the other hand, ontology reasoning can also be used by
an agent to inspect a specific situation it has to face (in regard of a domain
model and schematic knowledge). The latter is similar to querying a database,
whereby the terminological background knowledge is also taken into account
when computing the answers to the query.



138 8 Reasoning with WSML

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−flight”

namespace { ”http://example.org/ontologies/Media#”,
xsd ”http://www.w3.org/2001/XMLSchema#”,
foaf ”http://xmlns.com/foaf/0.1/”,
wsml ”http://www.wsmo.org/wsml/wsml−syntax#” }

ontology ”http://example.org/ontologies/Media”
importsOntology { ”http://xmlns.com/foaf/0.1/”}

// The schema−level part ...

concept MediaItem
hasTitle ofType (1 ∗) xsd#string
hasContributor impliesType (1 ∗) Artist

concept Artist subConceptOf foaf#Person
hasStageName ofType xsd#string
contributorOf inverseOf(hasContributor) impliesType MediaItem

concept CD subConceptOf MediaItem
concept Musician subConceptOf Artist

axiom adultDefinition
annotations

dc#description hasValue ”A sufficient and necessary characterization of adults .”
endAnnotations
definedBy

?p memberOf Adult :− ?p memberOf Person [hasAge hasValue ?a] and 20 < ?a.
!− ?p memberOf Adult[hasAge hasValue ?a] and naf 20 < ?a.

concept AdultArtist subConceptOf { Artist, Adult }
axiom adultArtistSufficientCondition
annotations

dc#description hasValue ”A suffcient condition for being an adult artist .”
endAnnotations
definedBy

?p memberOf AdultArtist impliedBy (?p memberOf Artist and ?p memberOf Adult).

// The assertional part ...

instance prince memberOf Musician
hasStageName hasValue ”Prince”
hasStageName hasValue ”The Artist Formerly Known As Prince”
foaf#name hasValue ”Prince Rogers Nelson”
contributorOf purpleRainAlbum
hasAge hasValue 50

Listing 8.1. Fragment of a WSML ontology

In this chapter we will use the WSML ontology fragment shown in Fig-
ure 8.1 as a running example. One can observe that this ontology represents
schema-level knowledge as well as assertional knowledge describing specific
instances which are known along with their specific properties.

Reasoning over this ontology for instance allows to reveal the following
implicit knowledge about the domain:

Since prince is known to be a Musician, which are known to be Artists, prince

must be an instance of Artists. Similarly, we can infer further that he must be
a Person too. Further, given that his age is 50, we can conclude from the first



8.2 Enabling Ontology Reasoning with WSML 139

rule defined in the axiom adultDefinition, that prince is also an Adult. Hence,
from axiom we can eventually infer that prince must be an AdultArtist. Hence,
a query for all instances in the ontology which are known to be AdultArtists
will return the instance prince eventually. From the definition of the attribute
contributorOf we can derive furthermore that purpleRainAlbum is a MediaItem

without having that fact explicitly mentioned.

8.2 Enabling Ontology Reasoning with WSML

WSML is a family of formal languages to describe the various elements of
the WSMO conceptual model on Semantic Web services semantically and to
capture the relevant aspects characterizing these elements within a specific
application in a precise and well-defined way. Section 4.3 showed that WSML
can be seen as a convenient uniform surface syntax to well-known knowledge
representation formalisms:

• The rule-based WSML Variants (i.e., WSML-Core, WSML-Flight, and
WSML-Rule) are based on the popular rule-based knowledge representa-
tion formalism investigated in the context of Logic Programming [96] and
Deductive Databases [135, 136, 42], namely Datalog [1] and its various
extensions.

• WSML-DL is based on a restricted subset of First-order Logic [52] which
became popular during the last two decades and form the basis of other
ontology languages for the Semantic Web, in particular OWL. These frag-
ment are called Description Logics [11]. WSML-DL corresponds essentially
to the expressive Description Logic SHIQ(D).

There are two extreme cases in the WSML family of languages as shown
in Figure 4.3: WSML-Core can be understood conceptually as forming the in-
tersection between these two different knowledge representation paradigms. It
constitutes a minimal interoperation layer between both paradigms. WSML-
Full on the other hand unifies both knowledge representation paradigm even-
tually. It provides a very expressive knowledge representation language and
constitutes a maximal interoperation layer between both paradigms.

Since both paradigms underlying the WSML family of languages have
been well-studied during the last decades, for both paradigms a wealth of al-
gorithms has been developed to perform reasoning. Algorithms usually target
at a specific reasoning task, such as query answering, checking subsumption
relations between concepts, or consistency checking of ontologies.

Often they are limited to solve such a specific reasoning task only and can
not necessarily be used to solve different reasoning task. Even if an algorithm
can be reused in principle to solve a specific reasoning task different from
the one the algorithm originally has been designed for, the result might turn
out to be very inefficient and a specialized algorithm is needed to solve the
reasoning task demanded by an application.



140 8 Reasoning with WSML

Description Logic research for instance focussed for a long while mainly
on reasoning with terminologies (often called TBoxes) or data schemata. The
developed algorithms were designed to perform consistency checks for termi-
nologies very efficiently and can solve a number of terminological reasoning
tasks efficiently. For other tasks such as query answering over ontologies, these
systems turned out to be applicable in principle but resulted in non-efficient
implementations which were not really suitable for practical applications. This
triggered more recently some dedicated research activities on more efficient
query answering algorithms for Description Logic knowledge bases. For Logic
Programming and Deductive Database system on the other hand, implemen-
tations focussed mainly on data-intensive instance-level reasoning and not so
much on schema-level reasoning. Consequently, these systems can solve query
answering with data-intensive knowledge bases efficiently. However, these sys-
tems are often inadequate for performing schema-level reasoning.

Logic Programming, Deductive Database, Description Logic and First-
order Logic research provided a wealth of implementations for the investi-
gated reasoning algorithms. Each such implementations are usually complex
software system themselves. They include typically sophisticated optimiza-
tions developed over years and consumed a substantial amount of development
work.

Based on these observations, i.e., (i) that WSML provides a convenient
uniform surface language for modelers, (ii) that numerous sophisticated im-
plementations for various reasoning tasks for the knowledge representation
paradigms underlying the different WSML variants already exist, and (iii)
that it is impossible to design and implement a generic reasoning algorithm
that can solve all kinds of reasoning tasks efficiently for any of the various
WSML language variants, the following two-phased approach to enable ontol-
ogy reasoning with WSML has been chosen:

• In a first step, a WSML ontology (and requested reasoning task in re-
gard of the ontology) is translated into an abstract representation of the
problem in the knowledge representation paradigm underlying the given
ontology, e.g., a query answering request over a specific WSML-Core on-
tology is translated into a Datalog program and a Datalog query over
this program. A detailed discussion for rule-based WSML variants can be
found in Section 8.3.
The abstract representation of the input problem which is generated fol-
lows a common tool-independent syntax.

• In a second step, the generated (abstract) representation of the ontology
(and requested reasoning task) are converted into a tool-specific represen-
tation and fed into a dedicated reasoning component which can solve the
requested reasoning task adequately and efficiently. The used reasoning
component is not required to understand any of the WSML variants (and
their syntax). It is integrated into the WSML reasoning system via a tool-
specific adapter component, which encapsulates all tool-specific aspects



8.2 Enabling Ontology Reasoning with WSML 141

(such as the required syntax or the interaction pattern with the specific
reasoning component) and hides the reasoning component behind a uni-
form interface.

This approach allows to perform reasoning with different WSML variants
based on a wide variety of existing reasoning components in a controlled way.
Applications can exploit the freedom to choose the most suitable reasoning
component for their purposes. At the same time, the modeling language used
in the application stays the same although the input language required by the
different reasoning components might differ substantially.

In other words, the two-phased approach allows modelers to leverage a
uniform and convenient modeling language and to integrate reasoning com-
ponents which are not WSML-aware themselves, but have been developed in
a different context.

For applications working with WSML-Core ontologies the opportunities to
reuse various inference systems is particularly nice: any WSML-Core ontology
can be interpreted at the same time in two different ways: as a logic program
or alternatively as a Description Logic knowledge base. Consequently, reason-
ing algorithms developed for both paradigms can be used for reasoning with
WSML-Core ontologies. This is especially interesting for applications since it
provides the possibility the use a wide-range of different algorithms and re-
spective inference systems each of which usually has specific advantages and
disadvantages depending on the reasoning task to be solved in regard of the
given ontology.

The WSML2Reasoner1 framework implements this two-phased approach
to reasoning with WSML ontologies. The conceptual architecture of the
WSML2Reasoner framework is shown in Figure 8.2. WSML2Reasoner is a
generic, flexible transformational framework for reasoning with the different
variants of the WSML language family. During the design phase, great im-
portance was attached to system modularity, reuse of existing technologies,
and flexibility in configuration and customization of a reasoning system for
specific reasoning tasks. The WSML2Reasoner framework allows the easy in-
tegration of such external reasoning components. Consequently instead of im-
plementing new reasoners, existing reasoner implementations can be used for
WSML through an adapter that maps WSML expressions first into common
(shared) knowledge representation formats (depending on the WSML variant
used), and then via specific adapters into the appropriate syntaxes of con-
crete reasoning engines. WSML2Reasoner thus contains various validation,
normalization and transformation functionalities that are reusable across dif-
ferent WSML variants. This generic approach allows applications to use their
specific existing reasoner of choice in the WSML context, and it provides the
possibility to exploit systems that are developed already for years and that
are therefore well-tuned with respect to performance and stability.

1 http://tools.deri.org/wsml2reasoner/



142 8 Reasoning with WSML

Fig. 8.2. Conceptual architecture of the WSML2Reasoner framework

8.3 Reasoning with Rule-Based Variants

In this section, we discuss a specific instantiation of the WSML2Reasoner
framework. More specifically, we describe the transformation process for the
rule-based WSML-variants (i.e., WSML-Core, WSML-Flight, and WSML-
Rule) in detail.

The semantics of rule-based WSML can in principle be reconstructed by a
mapping to Datalog [1] with support for (in)equality, default negation, func-
tion symbols, and integrity constraints. In the following, we refer to this lan-
guage simply as Datalog. To make use of existing rule engines, the reasoning
framework performs various syntactical transformations to convert an original
ontology in WSML syntax into a semantically equivalent Datalog program.
WSML reasoning tasks are then realized by means of Datalog querying via
calls to an underlying Datalog inference engine fed with the rules contained in
this program. The abstract knowledge representation layer shown in Figure 8.2
corresponds in this case to Datalog rules represented in a non-tool-specific
manner.

8.3.1 Ontology Transformations

The transformation of a WSML ontology to Datalog rules forms a pipeline of
single transformation steps that are subsequently applied, starting from the
original ontology. We overview the translation steps in the following without



8.3 Reasoning with Rule-Based Variants 143

Expression in conceptual syntax Resulting logical expression(s)

concept C1 subConceptOf C2 C1 subConceptOf C2.

concept C C[A ofType T ].
A ofType (0, 1) T !- ?x memberOf C and

?x[A hasValue ?y, A hasValue ?z]
and ?y != ?z.

concept C C[A impliesType T ].
A1 inverseOf A2 impliesType T (?x memberOf C and ?v memberOf T )

implies
(?x[A1 hasValue ?v] equivalent
?v[A2 hasValue ?x]).

relation R1/n subRelationOf R2 R1(?x1, . . . ,?xn) implies R2(?x1, . . . ,?xn).

instance I memberOf C I memberOf C.
A hasValue V I[A hasValue V ].

Table 8.1. Examples for the axiomatization of conceptual ontology modeling
elements

giving all details. Those can be found in [68].

Axiomatization. In a first step, the transformation τaxioms is applied as a
mapping O → 2LE from the set of all valid rule-based WSML ontologies to
the powerset of all logical expressions that conform to rule-based WSML. In
this transformation step, all conceptual syntax elements, such as concept and
attribute definitions or cardinality and type constraints, are converted into ap-
propriate axioms specified by logical expressions. Hence, after the translation
the input ontology is represented as a set of logical expression in the WSML
language only. The WSML logical expression language is rich enough to rep-
resent all semantically relevant aspects of the conceptual syntax. We give the
details of the conversions performed by τaxioms for some representative exam-
ples in Table 8.1 to illustrate the principle (see also Table 4.2 on page 47).
The WSML conceptual syntax constructs on the left-hand side are converted
to the respective WSML logical expressions on the right-hand side. The meta
variables C,Ci range over identifiers of WSML concepts, Ri, Ai over identi-
fiers of WSML relations and attributes, T over identifiers of WSML concepts
or datatypes and V over identifiers of WSML instances or data values.
Applying the axiomatization transformation to the ontology fragment

concept Artist subConceptOf Person
contributorOf inverseOf(hasContributor) impliesType MediaItem

concept Musician subConceptOf Artist

axiom adultDefinition
annotations

dc#description hasValue ”A sufficient and necessary characterization of adults .”
endAnnotations
definedBy

?p memberOf Adult :− ?p memberOf Person [hasAge hasValue ?a] and 20 < ?a.
!− ?p memberOf Adult[hasAge hasValue ?a] and naf 20 < ?a.

concept AdultArtist subConceptOf { Artist, Adult }



144 8 Reasoning with WSML

Original expression Normalized expression

τn({E1, . . . , En}) {τn(E1), . . . , τn(En)}
τn(Ex and Ey.) τn(Ex) and τn(Ey)
τn(Ex or Ey.) τn(Ex) or τn(Ey)
τn(Ex and (Ey or Ez).) τn(τn(Ex) and τn(Ey) or

τn(Ex) and τn(Ez).)
τn((Ex or Ey) and Ez).) τn(τn(Ex) and τn(Ez) or

τn(Ey) and τn(Ez).)
τn( naf (Ex and Ey).) naf τn(Ex) or naf τn(Ey).
τn( naf (Ex or Ey).) naf τn(Ex) and naf τn(Ey).
τn( naf ( naf Ex).) τn(Ex)
τn(Ex equivalent Ey.) τn((Ex implies Ey) and (Ex impliedBy Ey))
τn(Ex implies Ey.) τn(Ey) :− τn(Ex).
τn(Ex impliedBy Ey.) τn(Ex) :− τn(Ey).
τn(X[Y1, . . . , Yn].) X[Y1] and . . . and X[Yn].

Table 8.2. Normalization of WSML logical expressions

instance prince memberOf Musician
contributorOf hasValue purpleRainAlbum
hasAge hasValue 50

therefore results in the following set of logical expressions
Artist subConceptOf Person.
Artist [ contributorOf impliesType MediaItem].
(?x memberOf Artist and ?v memberOf MediaItem) implies

(?x[ contributorOf hasValue ?v] equivalent ?v[hasContributor hasValue ?x]) .

Musician subConceptOf Artist.
?p memberOf Adult :− ?p memberOf Person[hasAge hasValue ?a]

and wsml#numericLessThan(20, ?a).
!− ?p memberOf Adult[hasAge hasValue ?a] and naf wsml#numericLessThan(20, ?a).

AdultArtist subConceptOf { Artist, Adult }.

prince memberOf Musician.
prince [ contributorOf hasValue purpleRainAlbum, hasAge hasValue 50].

Normalization. The transformation τn is applied as a mapping 2LE → 2LE

to normalize WSML logical expressions. This normalization step reduces es-
sentially the complexity of logical expressions to bring expressions closer to
the simple syntactic form of literals in Datalog rules. The reduction includes
conversion to negation and disjunctive normal forms as well as decomposi-
tion of complex WSML molecules. The left part of Table 8.2 shows how the
various logical expressions are normalized in detail. The meta variables Ei

range over logical expressions in rule-based WSML, while X,Yi range over
parts of WSML molecules. After τn has been applied, the resulting expres-
sions have the form of logic programming rules with no deep nesting of logical
connectives.



8.3 Reasoning with Rule-Based Variants 145

Original expression Simplified rule(s)

τlt({E1, . . . , En}) {τlt(E1), . . . , τlt(En)}
τlt(H1 :−H2 :−B.) τlt(H1 :−H2 and B.)
τlt(H1 and . . . and Hn :−B.) τlt(H1 :−B.) , . . . , τlt(Hn :−B.)
τlt(H :− B1 or , . . . , or Bn.) τlt(H :−B1.) , . . . , τlt(H :−Bn.)

Table 8.3. Simplification of expressions using Llyod-Topor transformations.

Applying the normalization to the set of logical expressions that has been
generated by the axiomatization transformation results in the following set of
logical expressions

Artist subConceptOf Person.
Artist [ contributorOf impliesType MediaItem].

(?v[hasContributor hasValue ?x] :− ?x[contributorOf hasValue ?v])
and (?x[ contributorOf hasValue ?v] :− ?v[hasContributor hasValue ?x])
:− ?x memberOf Artist and ?v memberOf MediaItem.

Musician subConceptOf Artist.
?p memberOf Adult :− ?p memberOf Person and ?p[hasAge hasValue ?a]

and wsml#numericLessThan(20, ?a).
!− ?p memberOf Adult and ?p[hasAge hasValue ?a] and naf wsml#numericLessThan(20, ?a).

AdultArtist subConceptOf Artist.
AdultArtist subConceptOf Adult.

prince memberOf Musician.
prince [ contributorOf hasValue purpleRainAlbum].
prince [hasAge hasValue 50].

Lloyd-Topor Transformation. The transformation τlt is applied as a mapping
2LE → 2LE to flatten the complex WSML logical expressions, producing simple
rules according to the Lloyd-Topor transformations [97], as shown in Table 8.3.
Again, the meta variables Ei, Hi, Bi range over WSML logical expressions,
while Hi and Bi match the form of valid rule head and body expressions,
respectively, according to [68]. After this step, the resulting WSML expressions
have the form of proper Datalog rules with a single head and conjunctive
(possibly negated) body literals.
For the normalized logical expression set from above, this transformation
yields eventually

Artist subConceptOf Person.
Artist [ contributorOf impliesType MediaItem].

?v[hasContributor hasValue ?x] :− ?x[ contributorOf hasValue ?v] and ?x memberOf Artist and
?v memberOf MediaItem.

?x[ contributorOf hasValue ?v] :− ?v[hasContributor hasValue ?x] and ?x memberOf Artist and ?v
memberOf MediaItem.

Musician subConceptOf Artist.
?p memberOf Adult :− ?p memberOf Person and ?p[hasAge hasValue ?a]

and wsml#numericLessThan(20, ?a).
!− ?p memberOf Adult and ?p[hasAge hasValue ?a] and naf wsml#numericLessThan(20, ?a).



146 8 Reasoning with WSML

Original expression Simplified Datalog expression(s)

τdlog({E1, . . . , En}) {τdlog(E1), . . . , τdlog(En)}
τdlog( !− B.) � :− τdlog(B)
τdlog(H.) τdlog(H) .
τdlog(H :− B.) τdlog(H) :− τdlog(B)
τdlog(Ex and Ey.) τdlog(Ex) ∧ τdlog(Ey)
τdlog(naf E.) ∼ τdlog(E)
τdlog(Cx subConceptOf Cy.) psco(Cx, Cy)
τdlog(I memberOf C.) pmo(I, C)
τdlog(I [a hasValue V ].) phval(I, a, V )
τdlog(C[a impliesType T ].) pitype(C, a, T )
τdlog(C[a ofType T ].) potype(C, a, T )
τdlog(r(X1, . . . ,Xn).) r(X1, . . . , Xn)
τdlog(X = Y.) X = Y
τdlog(X != Y.) X �= Y

Table 8.4. Translating WSML logical expressions to Datalog rules

AdultArtist subConceptOf Artist.
AdultArtist subConceptOf Adult.

prince memberOf Musician.
prince [ contributorOf hasValue purpleRainAlbum].
prince [hasAge hasValue 50].

Datalog Rule Generation. In a final step, the transformation τdlog is applied as
a mapping 2LE → P from WSML logical expressions to the set of all Datalog
programs, yielding generic Datalog rules that represent the content of the
original WSML ontology. Rule-style language constructs, such as rules, facts,
constraints, conjunction and (default) negation, are mapped to the respective
Datalog elements. All remaining WSML-specific language constructs, such
as subConceptOf or ofType, are replaced by special meta-level predicates for
which the semantics of the respective language construct is encoded in meta-
level axioms as described in Section 8.3.2. Table 8.4 shows the mapping from
WSML logical expressions to Datalog including the meta-level predicates psco,
pmo, phval, pitype and potype that represent their respective WSML language
constructs as can be seen from the mapping. The meta variables E,H,B
range over WSML logical expressions with a general, a head or a body form,
while C, I, a denote WSML concepts, instances and attributes. Variables T can
either assume a concept or a datatype, and V stands for either an instance or
a data value, accordingly.

The resulting Datalog rules are of the form H :−B1 ∧ . . .∧Bn, where H
and Bi are literals for the head and the body of the rule, respectively. Body
literals can be negated in the sense of negation-as-failure, which is denoted
by ∼ Bi. As usual, rules with an empty body represent facts, and rules with



8.3 Reasoning with Rule-Based Variants 147

an empty head represent constraints. The latter is denoted by the head being
the empty clause symbol �.
For our example from above the transformation finally yields the following
Datalog rules

psco(Artist, Person)
pitype(Artist, contributorOf, MediaItem)

phval(?v, hasContributor, ?x) : −phval(?x, contributorOf, ?v) ∧ pmo(?x, Artist) ∧ pmo(?v, MediaItem)
phval(?x, contributorOf, ?v) : −phval(?v, hasContributor, ?x) ∧ pmo(?x, Artist) ∧ pmo(?v, MediaItem)

psco(Musician, Artist)
pmo(?p, Adult) : −pmo(?p, Person) ∧ phval(?p, hasAge, ?a) ∧ wsml#numericLessThan(20, ?a)
� : −pmo(?p, Person) ∧ phval(?p, hasAge, ?a)∧ ∼ wsml#numericLessThan(20, ?a)

psco(AdultArtist, Artist)
psco(AdultArtist, Adult)

pmo(prince, Musician)
phval(prince, contributorOf, purpleRainAlbum)
phval(prince, hasAge, 50)

Ultimately, we define the basic transformation2 τ for converting a rule-based
WSML ontology into a Datalog program based on the single transformation
steps introduced before by

τ = τdlog ◦ τlt ◦ τn ◦ τaxioms

As a mapping τ : O → P , this composition of the single steps is applied to
a WSML ontology O ∈ O to yield a semantically equivalent Datalog pro-
gram τ(O) = P ∈ P when interpreted with respect to the meta-level axioms
discussed next.

8.3.2 WSML Semantics through Meta-Level Axioms

The mapping from WSML to Datalog in the reasoning framework works such
that each WSML-identifiable entity, i.e. concept, instance, attribute etc., is
mapped to an instance (or logical constant) in Datalog, as depicted in Fig-
ure 8.3. There, the concepts C1, C2, C3 as well as the instances I1, I2 and
the attribute a are mapped to constants such as IC1 , II1 or Ia in Datalog,
representing the original WSML entities on the instance level.

Accordingly, the various special-purpose relationships that hold between
WSML entities such as subConceptOf, memberOf or hasValue, are mapped
to Datalog predicates that form a meta-level vocabulary for the WSML lan-
guage constructs. These are the meta-level predicates that appear in Table 8.4
for τdlog, and which are applied to the Datalog constants that represent the
WSML entities. The facts listed in Figure 8.3 illustrate the use of the meta-
level predicates. For example, the predicate pmo takes a Datalog constant that
2 Later on, the transformation pipeline is further extended to support datatypes

and debugging.



148 8 Reasoning with WSML

represents a WSML instance and one that represents a WSML concept, to
state that the instance is in the extension of this concept.

In contrast to a direct mapping from WSML to Datalog with concepts,
attributes and instances mapping to unary predicates, binary predicates and
constants, respectively, this indirect mapping allows for the WSML meta-
modelling facilities. Metamodelling allows an entity to be a concept and an
instance at the same time. By representing a WSML entity as a Datalog con-
stant, it could, for example, fill both the first as well as the second argument
of e.g. the predicate pmo.

Fig. 8.3. Meta-level predicates in WSML2Reasoner

A fixed set Pmeta of Datalog rules, shown in Figure 8.4, forms the meta-
level axioms which assure that the original WSML semantics is properly main-
tained. Axiom (1) realizes transitivity for the WSML subConceptOf construct,
while axiom (2) ensures that an instance of a subconcept is also an instance
of its superconcepts. Axiom (3) realizes the semantics for the impliesType con-
struct for attribute ranges: any attribute value is concluded to be in the ex-
tension of the range type declared for the attribute. Finally, axiom (4) realizes
the semantics of the ofType construct by a constraint that is violated whenever
an attribute value cannot be concluded to be in the extension of the declared
range type.

8.3.3 WSML Reasoning by Datalog Queries

To perform reasoning over the original WSML ontology O with an underlying
Datalog inference engine, a Datalog program PO = Pmeta ∪ τ(O) is built up



8.3 Reasoning with Rule-Based Variants 149

Meta-Level Axioms
(1) psco(C1, C3) :− psco(C1, C2) ∧ psco(C1, C3) ∧ psco(C2, C3)
(2) pmo(I, C2) :− pmo(I, C1) ∧ pmo(I, C2) ∧ psco(C1, C2)
(3) pmo(V, C2) :− pitype(C1, a, C2) ∧ pmo(V, C2) ∧ pmo(I, C1) ∧ pmo(V, C2) ∧ phval(I, a, V )
(4) � :− potype(C1, a, C2) ∧ pmo(I, C1) ∧ phval(I, a, V )∧ ∼ pmo(V, C2)

Fig. 8.4. Reconstructing the WSML molecule semantics in Datalog

that consists of the meta-level axioms together with the transformed ontology.
The different WSML reasoning tasks are then realized by performing Datalog
queries on PO. Posing a query Q(x) to a Datalog program P ∈ P is denoted
by (P, ? − Q(x)) and yields the set of all tuples t of constants occuring in
P that instantiate the vector x of variables in the query such that Q(t) is
satisfied in all stable models of P 3. If Q(x) contains no variables, in fact a
boolean query Q is posed that instead evaluates either to {Q} if Q is satisfied
in all stable models of P or ∅ otherwise.

Ontology Consistency – The task of checking a WMSL ontology for consis-
tency is done by querying for the empty clause, as expressed by the following
equivalence: O is satisfiable ⇔ (PO, ?− �) = ∅. If the resulting set is empty
then the empty clause could not be derived from the program and the original
ontology is satisfiable, otherwise it is not.

Entailment – The reasoning task of ground entailment by a WSML ontology is
done by using queries that contain no variables, as expressed in the following
equivalence: O |= φg ⇔ (PO, ? − τ ′(φg))) �= ∅. The WSML ground fact
φg ∈ LE is transformed to Datalog with a transformation τ ′ = τdlog ◦ τlt ◦ τn,
similar to the one that is applied to the ontology, and is evaluated together
with the Datalog program PO. If the resulting set is non-empty then φg is
entailed by the original ontology, otherwise it is not.

Retrieval – Similarly, instance retrieval can be performed by posing a WSML
query Q(x) with free variables x to the Datalog program PO, which yields
the following set: {o |O |= Q(o)} = (PO, ? − τ ′(Q(x))). The query Q(x) is
transformed to Datalog by τ ′ and evaluated together with the program PO.
The resulting set contains all object tuples o for which an instantiation of the
query expression is entailed by the original ontology, while the objects in o
can be identifiable WSML entities or data values.

8.3.4 Realising Datatype Reasoning

Although most of the generic Datalog rules are understood by practically
any Datalog implementation, realizing datatype reasoning has some intricate
challenges. The main challenge is related to Axiom (4) in Figure 8.4, which
checks attribute type constraints. The crucial part of the axiom is the literal
3 This criterion can be approximated efficiently by testing for satisfaction in the

(unique) well-founded model of P only.



150 8 Reasoning with WSML

∼ pmo(V,C2)

because for datatype values no explicit membership facts are included in the
ontology that could instantiate this literal. Consider, for example, the in-
stance prince in the WSML ontology shown in Listing 8.1 – there is no fact
pmo(50, integer) for the value of the hasAge attribute. Whenever a value is
defined for an attribute constrained by ofType, Axiom (4) would cause a con-
straint violation, since the semantics of an ofType-declared attribute requires
that any value of this attribute must in fact be known (explicitly or by infer-
ence) as being a valid value for the corresponding type in the declaration.

To solve this problem, pmo facts should be generated for all datatype con-
stants that appear as values of attributes having ofType constraints in the
ontology. I.e., for each such constant in the ontology, axioms of the following
form should appear,

pmo(V,D) :− typeOf(V,DT )

where D denotes the WSML datatype, DT denotes a datatype supported by
the underlying Datalog implementation, which is compatible with the WSML
datatype, and typeOf denotes a built-in predicate implemented by the Datalog
tool, which checks whether a constant value belongs to the specified datatype.

These additional meta-level axioms result in a new set of Datalog rules,
denoted by Pdata, which are no longer in generic Datalog but use tool-specific
built-in predicates of the underlying inference engine. The program PO is
extended by these rules as follows.

PO = Pmeta ∪ Pdata ∪ τ(O)

In addition to datatypes, WSML also supports some predefined datatype
predicates, such as numeric comparison (see [68] for a full list). The defini-
tion of the axiom adultDefinition in Listing 8.1, for example, uses a shortcut of
the WSML wsml#numericLessThan predicate (denoted by <). For translation
of these special predicates to the corresponding tool-specific built-in pred-
icates supported by the underlying Datalog reasoner, we introduce a new
tool-specific transformation step τdpred as a mapping P → P . This affects the
transformation pipeline τ as follows.

τ = τdpred ◦ τdlog ◦ τlt ◦ τn ◦ τaxioms

In summary, the underlying Datalog implementation must fulfill the fol-
lowing requirements to support WSML datatype reasoning: (i) It should pro-
vide built-in datatypes that correspond to WSML datatypes. (ii) It should
provide a predicate (or predicates) for checking whether a datatype covers
a constant and (iii) It should provide built-in predicates that correspond to
datatype-related predefined predicates in WSML.



8.3 Reasoning with Rule-Based Variants 151

8.3.5 Debugging Support

During the process of ontology development, an ontology engineer can easily
construct an erroneous model containing contradictory information. In or-
der to produce consistent ontologies, inconsistencies should be reported to
engineers with some details about the ontological elements that cause the
inconsistency.

In rule-based WSML, the source for erroneous modeling are always con-
straints, together with a violating situation of concrete instances related via
attributes. The plain Datalog mechanisms employed in the reasoning frame-
work as described previous sections only allow for checking whether some
constraint is violated, i.e., whether the empty clause is derived from PO indi-
cating that the original ontologyO contains errors – more detailed information
about the problem is not reported. Experience shows that it is a very hard
task to identify and correct errors in the ontology without such background
information.

In our framework, we support debugging features that provide informa-
tion about the ontology entities which are involved in a constraint violation.
We achieve this by replacing constraints with appropriate rules that derive
debugging-relevant information.

Identifying Constraint Violations

In case of an inconsistent ontology due to a constraint violation, two things are
of interest to the ontology engineer: a) the type of constraint that is violated
and b) the entities, i.e. concepts, attributes, instances, etc., that are involved
in the violation.

For the various types of constraint violations, the information needed by
the ontology engineer to track down the problem successfully is different from
case to case:

Attribute Type Violation – An attribute type constraint of the form C[a
ofType T ] is violated whenever an instance of the concept C has value V for
the attribute a, and it cannot be inferred that V belongs to the type T . Here,
T can be either a concept or a datatype, while V is then an instance or a data
value, accordingly. In such a situation, an ontology engineer is particularly
interested in the instance I, in the attribute value V that caused the constraint
violation, together with the attribute a and the expected type T which the
value V failed to adhere to.

Minimum Cardinality Violation – A minimum cardinality constraint of
the form concept C a (n *), is violated whenever the number of distinguished
values of the attribute a for some instance I of the concept C is less than the
specified cardinality n. In such a situation, an ontology engineer is particularly
interested in the instance I that failed to have a sufficient number of attribute
values, together with the actual attribute a. (Information about how many
values were missing can be learned by separate querying.)



152 8 Reasoning with WSML

Maximum Cardinality Violation – A maximum cardinality constraint of
the form concept C a (0 n), is violated whenever the number of distinguished
values of the attribute a for some instance I of the concept C exceeds the
specified cardinality n. Again, here an ontology engineer is particularly inter-
ested in the instance I for which the number of attribute values was exceeded,
together with the actual attribute a.

User-Defined Constraint Violation – Not only built-in WSML constraints,
but also user-defined constraints, contained in an axiom definition of the form
axiom AxID definedBy !- B., can be violated. In this case, the information
which helps an ontology engineer to repair an erroneous situation is dependent
on the arbitrarily complex body B and cannot be determined in advance.
However, a generic framework can at least identify the violated constraint by
reporting the identifier AxID of the axiom.

Debugging by Meta-Level Reasoning

In our framework, we realize the debugging features for reporting constraint
violations by replacing constraints with a special kind of rules. Instead of
deriving the empty clause, as constraints do, these rules derive information
about occurrences of constraint violations by instantiating debugging-specific
meta-level predicates with the entities involved in a violation. In this way,
information about constraint violations can be queried for by means of Datalog
inferencing.

The replacement of constraints for debugging is included in the transfor-
mation

τ = τdpred ◦ τdlog ◦ τlt ◦ τn ◦ τdebug ◦ τaxioms

where the additional transformation step τdebug is applied after the WSML
conceptual syntax has been resolved, replacing constraints on the level of
WSML logical expressions. Table 8.5 shows the detailed replacements per-
formed by τdebug for the different kinds of constraints.

Minimal cardinality constraints (with bodies Bmincard) and maximal car-
dinality constraints (with bodies Bmaxcard) are transformed to rules by keep-
ing their respective bodies and adding a head that instantiates one of the
predicates pv mincard and pv maxcard to indicate the respective cardinality viola-
tion. The variables for the involved attribute a and instance I are the ones
that occur in the respective constraint body B.

Similarly, a user-defined constraint is turned into a rule by keeping the
predefined body Buser and including a head that instantiates the predicate
pv user to indicate a user-defined violation. The only argument for the predicate
pv user is the identifier AxID of the axiom, by which the constraint has been
named.

Constraints on attribute types are handled differently because these con-
straints are not expanded during the transformation τaxioms; they are rather
represented by WSML ofType-molecules for which the semantics is encoded



8.3 Reasoning with Rule-Based Variants 153

Constraint Rule

τdebug({E1, . . . , En}) {τdebug(E1), . . . , τdebug(En)}
τdebug( !−Bmincard.) pv mincard(a, I) :−Bmincard.
τdebug( !−Bmaxcard.) pv maxcard(a, I) :−Bmaxcard.
τdebug( !−Buser.) pv user(AxID) :−Buser.
τdebug(C[a ofType T ].) pv otype(a, T, I, V ) :−

C[a ofType T ] and I memberOf C and
I [a hasValue V ] and naf VmemberOf T.

Table 8.5. Replacing constraints by rules

in the meta-level axioms Pmeta. In order to avoid the modification of Pmeta in
the reasoning framework, such molecules are expanded by τdebug, as shown in
Table 8.5.4

To maintain the semantics of the replaced constraints, an additional set of
meta-level axioms Pdebug ⊆ P is included for reasoning. The rules in Pdebug

have the form � :−pv and derive the empty clause for any type and occurrence
of a constraint violation.

Including the debugging features, the Datalog program for reasoning about
the original ontology then turns to

PO = Pmeta ∪ Pdata ∪ Pdebug ∪ τ(O) .

Occurrences of constraint violations can be recognized by querying PO for
instantiations of the various debugging-specific meta-level predicates pv otype,
pv mincard, pv maxcard and pv user. For example, the set

(PO, ? − pv otype(a, T, I, V ))

contains tuples for all occurrences of attribute type violations in PO, iden-
tifying the respective attribute a, expected type T , involved instance I and
violating value V for each violation. This set is empty no attribute types are
violated.

8.3.6 Fitting the Transformation into WSML2Reasoner

The design goals of our framework are modularity for the transformation steps
and flexibility with respect to the underlying inference engine. High mod-
ularity allows to reuse transformation functionality across different WSML
variants and reduces the effort for accomplishing other reasoning tasks. By
realizing WSML on top of a generic Datalog layer, we have also reduced the
effort of integrating other reasoners to a minimum.

The presented framework has been fully implemented in Java and can be
downloaded and tested online5.
4 After this expansion of ofType molecules, the respective axiom (4) in Pmeta for

realising the semantics of attribute type constraints does not apply anymore.
5 http://tools.deri.at/wsml2reasoner



154 8 Reasoning with WSML

Fig. 8.5. Transformation pipeline for rule-based variants

Architecture and Internal Layering.

Figure 8.5 shows the internal architecture of the framework as well as the data
flow during a prototypical usage scenario. The outer box outlines a WSML
reasoner component that allows a user to register WSML ontologies and to
pose queries on them. The inner box illustrates the transformation pipeline
introduced in Sections 8.3.1 – 8.3.4 and shows its subsequent steps in a layering
scheme.

Registered ontologies go through all the transformation steps, whereas
user queries are injected at a later stage, skipping the non-applicable axioma-
tization and constraint replacement steps. Here, the internal layering scheme
allows for an easy reorganization and reuse of the transformation steps on de-
mand, assuring high flexibility and modularity. A good example for this is the
constraint replacement transformation τdebug: if included in the pipeline, it
produces the rules that activate the debugging features according to Section
8.3.5; if excluded, the constraints remain in the resulting Datalog program
and are mapped to native constraints of the underlying reasoning engine.

The core component of the framework is an exchangeable Datalog infer-
ence engine wrapped by a reasoner adapter which embeds it in the framework
infrastructure. This adapter component mediates between the generic Datalog



8.4 Reasoning with WSML-DL 155

program produced in the transformations and the external engine’s tool-
specific Datalog implementation and built-in predicates. The adapter bridges
syntax-related as well as interaction-protocol related heterogeneities between
the WSML2Reasoner framework and the native reasoning component.

Interface and Integration with Existing Technology.

Our framework is based on the WSMO4J 6 project, which provides an API for
the programmatic handling of WSML documents. WSMO4J performs the task
of parsing and validating WSML ontologies and provides the source object
model for our translations. For a reasoner to be connected to the framework,
a small adapter class needs to be written, that translates generic Datalog ele-
ments to their equivalent constructs within the internal representation layer of
the underlying reasoner. Our framework currently comes with facades for two
built-in reasoners: KAON27 and IRIS8. The initial development was done with
the KAON2 inference engine that, with respect to the challenges for datatype
reasoning, provides a very flexible type system that allows for user-defined
datatypes, together with predicates on these datatypes, including type check-
ing predicates. However, KAON2 cannot be used for reasoning in WSML-Rule
as it does not support function symbols and unsafe rules. The second reasoner,
IRIS is currently under development. IRIS can be used for the WSML-Flight
variant and is currently being extended to support WSML-Rule.

8.4 Reasoning with WSML-DL

Inadditiontotherule-basedreasoningsupport,theWSML2Reasoner framework
also supports Description Logic-based reasoning for WSML-DL. Analogously
to rule-based WSML, WSML2Reasoner implements a a semantics-preserving
syntactic transformation of WSML-DL ontologies to a suitable abstract knowl-
edge representation format which can be mapped to various Description Logic
reasoning systems. More specifically, OWL-DL has been selected as the ab-
stract representation. The WSML reasoning tasks of checking ontology con-
sistency, entailment and instance retrieval can then be performed by means of
OWL DL reasoning applied on a transformed ontology. Thus, the framework
directly builds on top of existing OWL-DL or DL reasoning engines. Besides
the reasoning tasks, the framework provides validation of WSML-DL ontolo-
gies, as well as the serialization of the latter to OWL-DL. The full details of
the transformation pipeline which has been developed to deal with WSML-DL
ontologies can be found in [130].

6 http://wsmo4j.sourceforge.net
7 http://kaon2.semanticweb.org
8 http://iris-reasoner.org/



156 8 Reasoning with WSML

Ontology Transformation

The transformation of a WSML-DL ontology to an OWL DL ontology is done
in a sequence of single transformation steps that are applied one after another.

• Relations to Attributes. Replace relations, subrelations and relation
instances by attributes and axioms, according to the preprocessing steps
described in [130].

• Axiomatization. All conceptual elements are converted into appropriate
axioms specified by logical expressions, according to [130]. The resulting
set of logical expressions is semantically equivalent to the original WSML
ontology.

• Implication Reduction Rules. Replace equivalences and right-implica-
tions in logical expressions by left-implications.

• Inverse-Implication Reduction Rules. Replace conjunctions on the
left side and disjunctions on the right side of an inverse implication by left
implications.

• Molecule Decomposition Rules. Replace complex molecules inside a
logical expression by conjunctions of simple ones.

• OWL API Transformation. All logical expressions that are result-
ing from the transformation and normalization steps described above, are
processed one by one. Each logical expression is translated into the corre-
sponding OWL Description, according to the mapping described in [130].

Architecture and Internal Layering

Figure 8.6 shows the internal architecture of the WSML2Reasoner framework
that is related to WSML-DL, as well as the data flow during a prototypical us-
age scenario. The outer box outlines a WSML reasoner component that allows
a user to register WSML-DL ontologies and to reason over them. The inner
box illustrates the transformation pipeline and shows its subsequent steps in
a layering scheme. Registered ontologies go through all the transformation
steps, whereas the user reasoning tasks are injected at a later stage, skipping
the non-applicable axiomatization and normalization steps. Here, the internal
layering scheme allows for an easy reorganization and reuse of the transfor-
mation steps on demand, assuring high flexibility and modularity. The core
component of the framework is an exchangeable Description Logic or OWL
DL inference engine wrapped by a reasoner facade which embeds it in the
framework infrastructure. This facade mediates between the OWL DL on-
tology produced in the transformations and the tool-specific implementation
used by the external inference engine.

Supported Reasoning Tasks

The following reasoning tasks are supported by a WSML-DL Reasoner within
the WSML2Reasoner framework:



8.4 Reasoning with WSML-DL 157

Fig. 8.6. Transformation pipeline for WSML-DL

• Knowledge Base Consistency. This task checks a WSML-DL ontology
for consistency and verifies that the ontology does not contain any con-
tradictory facts. It checks whether the TBox and ABox of the knowledge
base do have a common, non-empty, model.

• Concept Satisfiability. This task checks whether there exists a model
of the knowledge base in which a given concept is interpreted non-empty.

• Concept Subsumption. This tasks checks whether a concept A is more
general than a concept B, i.e., whether B denotes a subset of the set
denoted by A. This task can also be used to check for Concept Equivalence
or Disjointness.

• Instance Checking. This tasks checks whether a given instance is mem-
ber of a given concept.

• Realization. This task determines the direct concept that a given instance
is member of.

• Instance Retrieval. This tasks is about retrieving all instances of a given
concept. It also allows to retrieve tuples of instances that satisfy certain
conditions.



158 8 Reasoning with WSML

In this chapter we discussed ontology reasoning with WSML and gave an
overview of the transformation framework WSML2Reasoner enabling ontol-
ogy reasoning for WSML. The framework reflects the very nature of WSML as
a family of ontology representation languages based on well-known knowledge
representation frameworks: Rule-based knowledge representation as investi-
gated by the deductive database community and tractable subsets of classical
first-order logic as investigated by the Description Logic community. For both
paradigms, algorithms for a variety of reasoning tasks have already been de-
fined and implemented (with substantial man-power) during the last decades.
The transformation approach embodied by the WSML2Reasoner framework
aims at reusing inference systems that are available on the market (and are
independent of WSML) and integrating them into the WSML context. This
approach is conceptually elegant and gives users of WSML maximum flexibil-
ity in selecting the best suitable reasoning system for their specific application.
We presented the transformations for the rule-based WSML variants in detail
and briefly overviewed the corresponding translation for the DL-based vari-
ant. Although the WSML2Reasoner approach works in principle with any of
the WSML variants, we are currently not aware of any implementation of a
deduction system which can deal with WSML-Full at present.



9

Creating and Managing WSML Descriptions

Throughout this book we have seen many examples of the usefulness of de-
scribing Web services semantically through the WSMO conceptual model and
the WSML language. Using these additional semantic descriptions of Web
services it is possible for many parts of the process of building Service Ori-
ented Architectures to be automated. Most importantly service providers and
service requesters can be dynamically bound together at runtime, rather than
hardwired to one another at application design time. Such runtime binding
involves tasks like service discovery, selection, composition, adaptation, me-
diation of both data and process, and invocation, with these tasks taking
place within a Semantic Execution Environment (SEE) like the Web Service
Execution Environment (WSMX) [72] or IRS-III [38]. A Semantic Execution
Environment acts a broker between the service requester and the many ser-
vices available on the web, ensuring that the right service is chosen for the
requester that can solve the user’s problem and that interoperability problems
between the requester and the service can be automatically resolved.

However the process of creating the necessary semantic descriptions in
WSML for a SEE to function is not a trivial task and without tool support
many of the tasks that need to be performed by the engineer can be lengthy
and involved, essentially discouraging the adoption of Semantic Web service
technology by industry. In this chapter we describe the Web Service Modeling
Toolkit (WSMT)1 [85, 86], an Integrated Development Environment for Se-
mantic Web services that supports the engineer through the full life cycle of
their semantic descriptions in WSML, from creation, through validation and
testing, to deployment on a Semantic Execution Environment.

An Integrated Development Environment (IDE) is defined as a type of
computer software that assists computer programmers to develop software.
The main aim of an IDE is to improve the productivity of the developer by
seamlessly integrating tools for tasks like editing, file management, compila-
tion, debugging and execution. Before the creation of the WSMT, developers

1 Available for download from http://wsmt.sourceforge.net



160 9 Creating and Managing WSML Descriptions

of semantic descriptions using the WSMO paradigm and the WSML Language
were forced to create their ontologies, web services, goals and mediators by
hand in a text editor. This has many inherent problems as, due to the lack
of validation and testing support, it is very easy for errors to creep into these
semantic descriptions, which go unnoticed by the developer until run-time.
Many other tasks that are very easy in an IDE can be hugely time consuming
without one, for example registering a semantic description with an execution
environment. Providing a fully integrated suite of tools for Semantic Web
services, that supports the Semantic Web service engineer through the full
development life cycle will improve that engineer’s productivity, reduce the
overall of cost of creating and maintaining Semantic Web services and aid in
the adoption of the WSML langauge.

The WSMT is implemented as a collection of plug-ins for the Eclipse
framework. Eclipse2 is a rich-client platform that enables the development of
rich-client applications on top of it through the creation of plug-ins for the
framework. A huge advantage of the Eclipse platform is the ability to combine
different sets of plug-ins together dynamically within one application. This
means that the WSMT is not only an Integrated Development Environment
for Semantic Web services, but can be combined with for example an IDE
for Web services to support the engineer through more of the day to day
tasks that he must perform. This sort of combination allows engineers to do
their work in one application with a consistent predictable tool suite, and
removes the necessity to constantly switch back and forth between different
applications. Eclipse also has the huge advantage of being written in java and
thus multi platform. Rich client applications can be written once and deployed
to different desktop operating systems like Windows, Linux and Mac OSX
with little to no effort.

The Web Service Modeling Toolkit currently focuses on four main cat-
egories of tools in order to support the engineer in the creation of WSML
descriptions and the structure of this chapter revolves around these categories.
Initially tools for editing and browsing WSML descriptions are introduced, fo-
cusing on the fact that different methods for displaying semantic descriptions
to the engineer have different advantages depending on the task being per-
formed. Following this the validation tools for WSML within the WSMT are
presented, showing that notifying the engineer of errors made as they are
made can reduce the time spent debugging semantic descriptions later in the
development process. Tools for testing valid semantic descriptions are then
introduced that allow the engineer to ensure that the semantic descriptions
created behave as expected in their intended deployment environment prior to
deploying them. Finally tools for actually deploying the semantic descriptions
in WSML to Semantic Execution Environments like WSMX and IRS-III are
described.

2 http://www.eclipse.org



9.1 Editing and Browsing WSML Descriptions 161

9.1 Editing and Browsing WSML Descriptions

As introduced in Chapter 4 the WSML surface syntax offers the engineer a
very light language for creating WSMO ontologies, Web services, goals and
mediators in WSML. However even with this language, which has only a small
amount of syntactic sugar, it is still quite difficult for an engineer to create
descriptions. Editing tools can aid the engineer in focusing on the conceptual
modeling tasks at hand and minimizing tasks that do not directly impact the
result, i.e., ensuring that the description being created is syntactically cor-
rect, manually entering complex IRIs etc. Thus by abstracting the engineer
from the underlying syntax of the document he can focus on ensuring that
his descriptions are modeled in the way that he wants and so produce better
descriptions. The tools can also enable the engineer to better understand the
descriptions being created, for example it can be hard to see the hierarchical
structure of the concepts in an ontology within a textual representation; how-
ever this structure becomes clearer when a tree or graph is displayed to the
user within an IDE.

The Web Service Modeling Toolkit (WSMT) provides tools at different
levels of abstraction with the aim of aiding engineers with tasks that involve
different types of tool support. The WSML Text Editor can be very useful
to those engineers already familiar and comfortable with the WSML service
syntax, while the WSML Form based Editor allows the engineer to forget
about the syntax of the document and use a form-filling approach to create
semantic descriptions. The WSML Visualizer is a graph based approach to
editing semantic descriptions and allows the engineer to see the complexities
that exist within the semantic description as that description is being modi-
fied. Alongside these three editors the WSMT also provides a number of views
that can be used in parallel with these editors to help the engineer to better
understand the semantic description being edited. For example the engineer
may use the WSML Text Editor, as he is familiar and comfortable with the
syntax, alongside the WSML Outline view that provides an overview of the
hierarchy of the document. In the following sections these editors and views
are described in more detail.

9.1.1 Editing WSML Descriptions through the Surface Syntax

As already described, by abstracting the engineer from the syntax of the doc-
ument he is editing can help to better focus him on the conceptual modeling
task that he is working on; however prior to the existence of any tool support
for WSML such engineers were creating these descriptions by hand and are
now familiar and comfortable working with the WSML syntax. Therefore it
is important that an IDE for Semantic Web services through WSML should
also support these experienced engineers as much as trying to support new
WSML users.



162 9 Creating and Managing WSML Descriptions

Fig. 9.1. WSML text editor showing an ontology

The WSML Text Editor in the WSMT is designed as such a tool for
supporting users who are more experienced with WSML, providing these users
with enhanced editing support for the WSML surface syntax. The features
supported by the WSML Text Editor include:

• Syntax Highlighting: This feature allows the engineer to easily identify
the parts of the text that are structural parts of the semantic description.
This is done by displaying WSML keywords, strings and IRIs in different
colors. the colors that are used for the different types of things can be
configured from the WSMT preference dialog.

• Syntax and Content Auto-completion: One inherent issue with text
based editing is that the user needs to type every character of the descrip-
tion. Auto-completion allows the user to perform some key combination
and then receive suggestions regarding the sorts of things they could type
here. Auto-completion in the WSML Text Editor suggests WSML Key-
words and relevant IRIs based on the users location in the document.

• Error Notification: The text editor takes advantage of the validation
support within the WSMT (described in more detail in Section 9.2). Errors
are displayed, both syntactic and semantic, within the text as the user
types. This is achieved by underlining erroneous parts of the text in red.

• Content Folding: For large semantic descriptions the surface syntax of
WSML can create quite large documents. These documents can become
unwieldy to manage and navigate. Code folding is a feature introduced
in the Java Development Toolkit3 that allows certain methods, comments

3 An Integrated Development Environment for the Java programming language
developed within the Eclipse framework



9.1 Editing and Browsing WSML Descriptions 163

etc. to be ’folded’ away so that they are removed from the view of the user
(the top line of the folded section remains visible). This folding technique
has been implemented in the WSML Text Editor for WSML constructs.
Folding elements allows the user to configure the current view of the text
of the semantic description to that which makes them most productive.

• Bracket Highlighting: WSML descriptions can contain many brackets
that make up the syntactic sugar of the description. These brackets can be
angle, round, square or curly brackets. Errors in the syntax are prevented
by highlighting the location of a closing bracket when the user places the
cursor beside an opening bracket and vice versa.

9.1.2 Form-Based Management of WSML Descriptions

One step up from the WSML Text Editor is the WSML Form based Editor,
which abstracts the engineer from the underlying WSML syntax by providing
a structured form to complete. The content entered into the form can be
serialized to the WSML surface syntax whenever the engineer desires, thus
allowing the engineer to focus on the conceptual modeling task at hand and not
having to manually manage the syntactical structure of the WSML document.
Not only does this abstraction result in a benefit in terms of focus it also brings
a benefit of time, firstly it reduces the number of key strokes that the user
must make and secondly it removes the time that the user would have spent
debugging problems with the syntax and structure of the document containing
the WSML semantic description.

The forms displayed to the engineer are made up of text fields, lists and
tables. Commonly with a form based approach the engineer would be required
to view the information on the form and then edit the information in the form
via some form of popup menus, this is especially true when dealing with tables.
Within the WSML Form based Editor all of the fields are directly editable
by the engineer to further reduce the number of key strokes or clicks that the
engineer must make in order to create a valid semantic description.

To ensure that the size of the forms presented to the engineer do not
become too large and difficult to use the WSML Form based Editor is broken
up into a number of different tabs, with each tab focusing on a different part
of the WSML semantic description being created or edited. For example when
working with a Web service in WSML there are three tabs available to the
engineer, namely the Header, Web service and capability tabs as can be seen
in Figure 9.2.

There are certain parts of a description that are easier to create by textual
means, for example when specifying the logical expression belonging to the
pre-condition of the capability of a Web service. in these cases the user is
presented with a text area into which the logical expression can be input. To
improve the productivity of the engineer in these text areas they have been
enhanced with relevant features from the WSML Text Editor, for example



164 9 Creating and Managing WSML Descriptions

Fig. 9.2. WSML form-based editor showing a service description

syntax highlighting, syntax and content auto-completion, error notification
and bracket highlighting.

9.1.3 Graph-Based Description Engineering and Browsing

As described in [84] the WSML Visualizer is a graph based editing and brows-
ing tool for WSMO ontologies, Web services, goals and mediators expressed
through WSML. The advantage of using a graph based approach for represent-
ing semantic descriptions is that the complexities of the semantic description
that are usually hidden in a text based approach or hard to represent in a
form based approach, are easily displayed to the user. The WSML Visualizer
is based upon the JPowerGraph4 graphing library, that was also developed
by the WSMT team. The editor is relatively unique in that most visualiza-
tion tools for semantic descriptions are bolted on top of existing editing tools,
such that the engineer needs to constantly switch back and forth between the
editing and visualizing tool in order to understand the effects of changes that
are being made, while this tool provides editing support directly within the
visualization such that the engineer can immediately see the effects of making
a change to the semantic description.

As can be seen in Figure 9.3 semantic descriptions within the visualizer
are represented as nodes and edges of a graph, and are laid out using the
spring layout algorithm from JPowerGraph. In a spring layout the nodes in

4 Available for download from http://jpowergraph.sourceforge.net



9.1 Editing and Browsing WSML Descriptions 165

Fig. 9.3. WSML visualizer showing an ontology

the graph repel one another, while edges between nodes attract nodes to one
another. The result of this layout is that semantically related things (denoted
as related due to the edges between them) are displayed in groups close to
each other. Within the graph a number of primitive manipulation techniques
are available that users are familiar with from web browsers, word processing
and image manipulation applications. Using controls that users are familiar
with sets the user at ease as they immediately understand how these controls
work, emphasizing the predictability of the GUI. The primitive manipulation
tools include Zoom, Rotate, Drag and Drop (for manually positioning the
graph) and the ability to change the node size from large to small.

Many visualization solutions for semantic descriptions do not scale as the
size of the semantic description increases. Within the WSML Visualizer a
number of mechanisms are provided that aim to improve the quality of the
visualization as the complexity and size of the semantic description being
visualized increases:

• Filtering: There are a finite number of types of nodes that can appear
within the visualization of WSML semantic description, thus it is possi-
ble to provide a mechanism allowing the engineer to filter the types of
nodes which should be displayed within the graph. The legend within the
WSML Visualizer, which can be seen in Figure 9.3, is interactive and al-
lows the engineer to modify the state of the filter and change the contents
of the visualization. Such a filtering allows the engineer to focus on those



166 9 Creating and Managing WSML Descriptions

Fig. 9.4. WSML visualizer showing an ontology concept

elements of interest within a semantic description and remove those that
are currently not of interest.

• Semantic Levels: One common approach to resolving the graph com-
plexity issue is to remove certain types of complexities from the graph,
i.e., not to represent certain relationships between elements in the semantic
description. For example OWLViz5, a visualization tool for OWL, does not
show the properties of classes in an OWL ontology. However this approach
inevitably results in an incomplete solution, where many functions required
by the engineer are not available. The WSML Visualizer approaches the
problem in a different manner; complexities are grouped together into Se-
mantic Levels with each of these levels being associated with a given entity
type in WSMO. Thus at any semantic level all the complexities needed
by the user are visible. If the user wishes to see more detail about a given
entity they can double click on it; this will change the focus of the visual-
ization onto this entity and more detail of this entity can be seen.
An example of two semantic levels can be seen in Figure 9.4, at the ontol-
ogy semantic level the instances, relations, relation instances and axioms
of the ontology are displayed. At this level the user can gain information
about the structure of the ontology, with respect to the subConceptOf, sub-
RelationOf and memberOf relationships in a WSMO ontology. By double
clicking on a given concept the user can switch to the concept semantic
level. At this level the selected concept is displayed along with all of its

5 http://www.co-ode.org/downloads/owlviz/



9.1 Editing and Browsing WSML Descriptions 167

super concepts, direct sub concepts and instances. Also at this level all
the attributes of the concept can be seen along with their ranges, thus
allowing the user to see more information about the concept and to see
more clearly the relationship that this concept has with other entities in
the ontology.

• Instance Clustering: When dealing with ontologies there can exist cases
where a large number of instances, which are used in the modeling process,
are present within an ontological description. These large numbers of in-
stances can make the graph very cluttered and hard to understand. Within
the WSML Visualizer the approach described in [60], which introduces
the concept of a cluster map for visualizing light-weight ontologies, is im-
plemented. This allows large numbers of instances in an ontology to be
grouped together in clusters. These clusters give the engineer an under-
standing of the relative number of instances within an ontology for different
concepts.

The combination of all these features within the WSML Visualizer pro-
vides a visualization solution for ontologies, Web services, goals and mediators
expressed in WSML that scales to a better degree than any other existing vi-
sualization approaches.

9.1.4 Additional browsing tools

The different layers of editing support provided by the WSML Text Editor,
WSML Form Based Editor and WSML Visualizer described in the previous
sections gives the engineer a suite of tools that can be useful for editing se-
mantic descriptions in WSML and can each be employed separately for the
most appropriate editing tasks; However it is possible to enhance the function
of these editors by providing additional tools that operate in parallel with
each of these editors. These tools, referred to as Eclipse views, provide the
engineer with different views over the data currently being edited allowing
the engineer to see the data from another angle.

Within the WSMT there are a number of views relevant for the engineer
when editing a WSML description. The WSML Outline View provides an
outline of the structure of the file that is currently open in a given editor. This
is especially useful when editing WSML descriptions using the WSML Text
Editor as the outline view provides an overview of all the elements contained
within the structure. By selecting an element, for example a concept in an
Ontology or the capability of a Web service, in the outline view this element
is then selected in the editor currently being used, thus providing an additional
mechanism for browsing a semantic description while editing it, as can be seen
in Figure 9.5. The WSML Hierarchy View provides the engineer with more
information on the hierarchy that the currently selected entity belongs too.
This view is used primarily with elements of an WSML ontology to better
understand the subConceptOf, subRelationOf, and memberOf relationships



168 9 Creating and Managing WSML Descriptions

Fig. 9.5. Outline view with WSML text editor showing an ontology

that a given concept, relation, instance or relationInstance is part of. The
user can select any of these entities within an editor and by pressing the F4
key the hierarchy for that element is displayed within the hierarchy view.

9.2 Validating WSML Descriptions

One of the most common and costly problems when creating semantic de-
scriptions is incorrect modeling and human input errors. Without the benefit
of tool support it is very easy for the engineer to make mistakes in the syntax
and semantics of the WSML description being created. Providing embedded
validation support within the development environment being used by the
engineer at both the syntactic and semantic levels can vastly reduce the time
an engineer spends debugging a semantic description.

The Web Service Modeling Toolkit (WSMT) uses functionality embedded
within the WSMO4J library, which provides an object model for WSMO that
comes bundled with a parser and serializer for the WSML surface syntax, to
perform both syntactic and semantic validation on WSML documents within
the workspace of the engineer. From the perspective of ensuring that the
syntax of the document is correct, the WSMT uses the WSMO4J parser to
parse any file within the workspace that changes, i.e., when the engineer saves
a given document the WSMT will ensure that it parses correctly. Having
ensured that the file parses correctly the WSMT then puts the ontologies, Web
services, goals and mediators parsed from the changed file into the WSMO4J
validator to ensure that the top entities are valid.

This validation consists of checking whether the conceptual and the logical-
expression definitions within a WSML file are compliant to the WSML variant
specified in the header of the document. The validator starts by checking the



9.2 Validating WSML Descriptions 169

Fig. 9.6. WSML navigator showing a WSML project

correct usage of unnumbered anonymous identifiers in a WSML file, as an
object with an unnumbered anonymous identifier must never be referenced.
Then it goes on to check which features are used, e.g., attribute cardinality,
impliesType, ofType, etc., and whether they are allowed in the variant speci-
fied within the header of the given WSML document, for example cardinality
constraints are not allowed in the WSML-Core or WSML-DL variants and
would thus result in a validation error. Next the validator checks whether the
logical expressions in each of the axioms in the file conform to the WSML
variant used. The WSMO4J Validator does not only check for errors, but also
produces warnings. While an error always indicating an incorrect usage of
WSML features with respect to a given WSML variant, a warning is meant to
point out unrecommended usages of WSML, and with them suggest an alter-
nate “clean” usage of WSML, for example in WSML-DL the validator checks
whether all entities are explicitly defined, and produces warnings if not.

Issues that result either from being unable to parse a given document in
the workspace or errors and warnings resulting from the validation process
are collated and placed as markers on the WSML file that was validated. If
there exists any error on a given file then this file will be graphically marked
as having an error within the WSML Navigator. If no errors exist but some
warnings are present then the file will be graphically marked as having a
warning within the WSML Navigator. Files with no errors or warnings are
unmarked. These three states within the WSML Navigator can be seen within
Figure 9.6.



170 9 Creating and Managing WSML Descriptions

Fig. 9.7. Problem view showing an ontology with an incorrect WSML variant

The markers placed on the files in the workspace are used in two other
ways by the WSMT in order to assist the user. As already mentioned the
editors introduced in Section 9.1 all have different forms of error notification
facilities that display errors in the editor as they are made. These errors are
shown within the editors by monitoring the markers on the respective files.
The second way in which these markers are used can be seen in Figure 9.7.
The standard Eclipse Problems View provides the engineer with a list of all
the errors and warnings within the workspace, within a specific project, or in
a specific file. The engineer can use this list to track down all the problems
within the workspace and repair them.

9.3 Testing WSML Ontologies, Web Services and Goals

Once the validity of semantic descriptions has been established the next step
is usually to deploy these descriptions to the application in which they will
be used. In many industrial scenarios this will be some form of test environ-
ment where the new descriptions can be tested for a period of time prior to
making the changes live on a live server. At this point the engineer enters
an iterative process that involves deploying the description to the test envi-
ronment, performing some testing on the system, making modifications and
then redeploying for further testing. Such a process can be very costly if the
number of redeployments required, before a satisfactory result is achieved, is
high. As mentioned in the previous section, the WSMT checks the syntactic
and semantic validity of the WSML descriptions in the workspace; however
such validity does not ensure that the descriptions created actually match
what the engineer was attempting to model in the first place.

The WSMT aims to reduce the number of redeployments that the engineer
needs to make by providing functionality within the development environment
that enables the engineer to test that the semantic descriptions behave as
expected in an environment similar to that in which they will eventually be
used. By performing this testing within the development environment itself the
engineer removes the overhead of having to setup and configure a deployment
environment for each test run and can quickly make changes to the semantic



9.3 Testing WSML Ontologies, Web Services and Goals 171

description open in the current editor and see how the changes that he makes
effect the behavior of the semantic description. It should of course be noted
that this form of testing does not replace the necessity to test the description
in a testing environment identical to the deployment environment prior to
actual deployment, but provides a mechanism for the engineer to quickly
debug problems within the development environment and improve his overall
productivity in the test cycle. In the rest of this section we describe the testing
support within the WSMT that helps the engineer to test the behavior of
WSML ontologies, Web services and goals in the environments in which they
will be used.

9.3.1 Testing WSML Ontologies Using the WSML2Reasoner
Framework

Ontologies act as the data model for all descriptions in WSML and an en-
gineer should test each of the ontologies that he has created to ensure that
the ontology behaves as expected before he bases other descriptions on the
ontology. The deployment environments for a WSML ontology is generally a
reasoner within with reasoning tasks over the ontology can be performed. In
the WSMT we use the WSML2 Reasoner framework to perform testing of
WSML ontologies in a variety of reasoners. The WSML2 Reasoner6 frame-
work (see the previous chapter) provides normalization and transformation
functions that allow translation of ontology descriptions in WSML to the
appropriate underlying syntax of a number of underlying reasoners. Thus al-
lowing users of different WSML variants to perform their reasoning through
the same framework. The functionality of the WSML2 Reasoner framework
is exposed to the engineer in the form of the WSML Reasoning View. This
view, as can be seen in Figure 9.8 allows the engineer to perform reasoning
functions over the ontology that is visible in the currently open editor (plus
any ontologies that this ontology imports) and to view the results of that
reasoning task.

The types of reasoning tasks that can be performed in the WSML Reasoner
View depends upon the variant of the ontology open in the current editor.
For WSML-Flight and WSML-Rule, access is provided to the IRIS, MINS
and KAON2 reasoners which provide query answering support. The engineer
can enter a query that is to be posed to the current ontology and the results
of executing this query are displayed to the user in a table. For WSML-
DL, access is provided to the Pellet reasoner, which can perform consistency
checking and a selection of predefined queries over description logic ontologies.
By providing access to these reasoning functions the engineer can test that the
reasoning functions, that will be used in the deployment environment, behave
as expected and return the expected answer. In cases where this does not occur
the engineer can be sure that some form of remodeling within his ontologies is

6 http://tools.deri.org/wsml2reasoner/



172 9 Creating and Managing WSML Descriptions

Fig. 9.8. Reasoner view with resources in the workspace

required in order to get the correct behavior for the current ontology within
the desired reasoner.

The WSML Reasoner View is also connected to all the editors in the
WSMT, so not only can it retrieve the ontology that is currently being edited
but can also change the current visible entity within a given editor when
the user double clicks that entity in the table of results. This functionality
allows the results of a query to act as a mechanism for browsing entities in
the workspace.

9.3.2 Testing WSML Web Services and Goals Using Discovery
Engines

A crucial point when created Semantic Web services is to ensure that users
can find them. Any service created by an engineer that cannot be found by
any discovery engine is useless for an open and distributed environment like
the Web. As described in Chapter 6, discovery is the process of matching
the user’s goal against the available Semantic Web services to find the most
appropriate functional match. To enable the engineer to test that the WSML
Web services that he has created do indeed match the expected WSML goals
the WSMT provides the WSML Discovery view.

The WSML Discovery View, as can be seen in Figure 9.9, allows the en-
gineer to select a WSML goal and a collection of WSML Web services from
the workspace and execute the matching process between them, from this the
engineer can determine if the selected goal finds the expected Web services
or not. The view functions by invoking the discovery engines from the Web
Service Execution Environment (WSMX), which have been embedded within
the WSMT in a similar manner as with the WSML2Reasoner framework.

One crucial point that should be noted is that the engineer will not nec-
essarily know all of the WSML goals that will be provided by end users.



9.4 Interfacing with Semantic Execution Environments 173

Fig. 9.9. Discovery view showing matching goal and Web service descriptions

Therefore he can realistically only test what he believes are good examples of
end user goals. Towards these ends many service providers may offer sample
goals that end users can use in order to find their services. These sample goals
can play a crucial role in the competitiveness of a given company, in that if
it can ensure that its Semantic Web services match the sample goals of com-
peting companies it can ensure that end-users of its competitors services will
also see their services. The WSML Discovery View gives the engineers of such
services the ability to quickly perform these tests and ensure that the services
he creates match with the desired goals.

9.4 Interfacing with Semantic Execution Environments

Ultimately the purpose of creating WSMO ontologies, Web services, goals and
mediators in the WSML language is to allow the automation of the process of
using Web services and building Service Oriented Architectures, by making
the descriptions of Web services processable and understandable by machines.
An environment that performs automation of tasks within the process of using
Web services, like service discovery, selection, composition, adaptation, medi-
ation of both data and process, and invocation is referred to as a Semantic
Execution Environment (SEE). Such a SEE is essentially responsible for bind-
ing service requesters and service providers at runtime through the interaction
of the requesters goal description and the providers Web service description.



174 9 Creating and Managing WSML Descriptions

Fig. 9.10. SEE perspective showing connection to a WSMX server

However in order for the functionality of the SEE to be realized the rele-
vant Web services and goals need to be available to the SEE along with any
ontologies that these Web services and goals import or mediators that they
use. Without the availability of tool support, the process of deploying WSMO
semantic descriptions expressed in WSML to a Semantic Execution Environ-
ment would be complex and would involve either interfacing manually with
the management Web services of the SEE or manually placing the relevant
WSML documents into the SEEs repositories by hand.

The Web Service Modeling Toolkit makes it easy for the engineer to in-
terface with a Semantic Execution Environment in order to deploy relevant
WSML descriptions. The WSMT allows the engineer to configure multiple
Semantic Execution Environments in order to :

• Browse the ontologies, Web services, goals and mediators already present
on a SEE. As can be seen in Figure 9.10 the SEE Servers view provides
the user with an overview of the contents of the internal repositories of a
given SEE.

• Store WSML descriptions from the WSMT workspace into a SEE. Within
the WSML Navigator, as already seen in Figure 9.6, the engineer can right
click on one or more WSML files and store the contents of these files to a
given SEE.

• Retrieve existing descriptions from a SEE in order to edit them. By right
clicking on an ontology, Web service, goal or mediator in the SEE Servers
view this element can be stored into the local workspace for editing and
then later stored back into the SEE repository.



9.4 Interfacing with Semantic Execution Environments 175

• Invoke an entrypoint of the SEE in order to test that created descriptions
behave as expected on the SEE. Again by right clicking on one or more
WSML files in the workspace different entry points of the WSMT can
be invoked. For example, if the files selected contain a WSML goal then
the achieveGoal entrypoint is available to the engineer. These entrypoints
allow the engineer to do further testing of the semantic descriptions that
they have created in a runtime scenario.

At the time of writing, the WSMT supported two Semantic Execution En-
vironments, namely the Web Service Execution Environment (WSMX) [72]
and IRS-III [38]. Both of these environments expose a set of Web services
that provide access to the functionality of the SEE, allowing the engineer
to browse, store and retrieve WSML descriptions and invoke entrypoints of
the SEE. One interesting difference between WSMX and IRS-III is that all
data within IRS-III is described in terms of the OCML format [110], and the
WSMT must translate to and from WSML and this format when sending data
to or retrieving data from IRS-III.

In this chapter we have seen how an integrated development environment can
be used to assist the authors with the task of writing goal and Web service
descriptions. The Web Service Modeling Toolkit not only provides graphical
support for modeling various aspects of ontologies, goals, and Web services,
but also makes use of reasoning and discovery tools for checking consistency of
descriptions and allowing authors to make sure their descriptions meet their
expectations.



10

Conclusions and Outlook

Throughout this book we have described the WSML language in detail, we
have shown how the language can be used for describing the various aspects
of Web services, and we have shown how WSML descriptions can be managed
and processed. In this chapter we summarize the content of the book and
give an overview of the ongoing research standardization efforts in the area of
Semantic Web service description.

10.1 Semantic Web Service Description with WSML

While the Web Service Modeling Ontology WSMO [57] identifies and describes
the elements that are important for the semantic description of Web services,
it does not provide a concrete language for writing such descriptions, nor does
it provide means for processing such descriptions. The Web Service Modeling
Language WSML fills these gaps by providing a language for the description
of goals, Web services, mediators, and ontologies, and by providing means for
matching goals and services, processing service interfaces (choreographies),
and reasoning with ontologies.

We have seen that WSML consists of three sub-languages: the WSML
ontology language, the WSML capability language, and the WSML choreog-
raphy language. The ontology language is used for the description of termi-
nologies and background knowledge, and can be combined with RDFS and
OWL DL, thereby enabling the use of ontologies written using these languages
for Web service description. The capability language introduces two notions:
(a) set-based capabilities, which correspond to Description Logic concepts –
essentially, ontologies are used for capability description; the capability cor-
responds to a concept in a task ontology – and (b) state-based capabilities,
which extend the ontology language with a notion of pre- and post-state – a
Web service execution is seen as a state transition and the capability defines
conditions on the state before and after execution; ontologies are used to
define the format of inputs and outputs, as well as background knowledge.



178 10 Conclusions and Outlook

The choreography language is used for the description of client interfaces –
choreographies – of Web services. The interaction between the client and the
service typically involves a number of messages sent back and forth between
the requester and provider. The content of the messages is described by on-
tology concepts; the rules governing the interaction itself are captured using
transition rules. Essentially, given a state of the interaction, the transition
rules determine whether a state transition will take place, and which state
will be next in the interaction.

We have also seen that, orthogonal to the mentioned sub-languages,
WSML contains a number of language variants, which are based on different
knowledge representation paradigms. Notably, WSML-DL corresponds to the
Description Logics (DL) paradigm, specifically the Description Logic SHIQ
[78], and WSML-Rule corresponds to the Logic Programming (LP) para-
digm, specifically the Stable Model Semantics for normal logic programs [62].1

Then, WSML-Flight is the function-free, locally stratified subset of WSML-
Rule, WSML-Core is the intersection of Flight and DL, and WSML-Full ex-
tends both the Rule and DL variants. Thus, WSML gives the user a choice
the DL and LP paradigms for ontology and Web service modeling, and allows
interaction between the paradigms through a common subset (WSML-Core).
As there is currently no widespread consensus about the best way of combin-
ing the DL and LP paradigms, and since the problem of reasoning with such
combinations using the existing approaches has not been investigated as much
as the DL and LP paradigms, and suffers from problems of tractability and
undecidability, it was decided not to define a normative semantics for WSML-
Full. However, there is a proposal [32] for using an expressive nonmonotonic
logic as the underlying paradigm for WSML-Full.

Finally, we have seen two tools for processing and managing WSML
descriptions, namely the WSML2Reasoner and the Web Service Modeling
Toolkit (WSMT). The former exploits the correspondence between the re-
spective WSML variants and the DL and LP paradigms; it uses existing DL
and LP reasoners to process WSML descriptions. The WSMT is an Integrated
Development Environment for Semantic Web services that supports the en-
gineer in editing, browsing, testing, and validating WSML descriptions. The
WSMT not only allows users to manage WSML descriptions, but also en-
ables interfacing with Semantic Execution Environments [56] for storing and
retrieving descriptions and for invoking services.

1 Recall that the Well-Founded Semantics [61] may be used to approximate the
Stable Model Semantics for query answering.



10.2 Ongoing Standardization Efforts 179

10.2 Ongoing Standardization Efforts

Semantic Web Services

Recall that WSDL [2] is concerned with the format of messages and communi-
cation protocols, whereas WSML is concerned with the meaning of messages
and the functionality and behavior of services; therefore, WSML and WSDL
address orthogonal aspects of Web service descriptions. SAWSDL [54] is a re-
cent W3C recommendation concerned with modeling Semantic Web services.
It defines a simple extension of WSDL, allowing referring to ontologies and
Semantic Web service descriptions from a WSDL Web service description.
Since such references are IRIs, and WSML elements are identified using IRIs,
SAWSDL may be used to connect WSDL descriptions and WSML descrip-
tions.

The OASIS Semantic Execution Environment Technical Committee (SEE-
TC)2 aims to provide a standardized description of the interfaces and behavior
of the services that make up a Semantic Execution Environment for Semantic
Web services, along with a description of how these services should interact
with each other. The services within a SEE are broken up into two main
categories namely broker services and base services. Broker services provide
high-level functionality such as service discovery and data mediation, while
base services perform a supporting role, offering services such as reasoning
for semantic descriptions and resource management and storage. The OASIS
SEE-TC also provides a reference ontology for Service Oriented Architectures
that is based on a abstraction from WSMO and thus WSMO and WSML can
be used to realize concrete implementations of the services standardized in
the SEE-TC.

The Object Management Group (OMG) standardization body recently is-
sued a Request For Proposals (RFP) for a UML Profile and Metamodel for
Web services. The RFP solicits those working in the field of modeling Web
services to submit proposals for a services metamodel and profile for extend-
ing UML with capabilities for modeling services using SOA. A solid proposal
is currently being drafted by a number of research and industry partners both
in the US and in Europe aimed to address this RFP from OMG; these part-
ners include members of the Semantic Web service community. The intention
of the proposal is to provide a UML Profile and Metamodel that considers
how the services will be realized, allowing services created with UML to be
grounded to Web services using technologies like grid, Semantic Web services
and P2P. The proposal considers semantics as a core solution to resolving
heterogeneity issues between services in an SOA and as part of the proposal
extensions to the existing Ontology Definition Metamodel (ODM) standard
from OMG will be made. ODM provides a Metamodel based on the Meta-
Object Facility (MOF) enabling the transformation of models for different
ontology languages. As already mentioned WSMO is also defined using MOF
2 http://www.oasis-open.org/committees/semantic-ex/



180 10 Conclusions and Outlook

and ongoing work will enable the use of WSMO with the ODM standard to
enable the exchange of WSMO models through the ODM standard. This re-
search will enable further adoption of WSMO and as such will see further
adoption of the WSML language.

Semantic Web

Related, and to some extent orthogonal to Semantic Web service description
efforts are the Semantic Web efforts. Recall that ontologies form the basic
vocabulary for service descriptions, and Semantic Web technologies such as
RDFS and OWL may be used for describing these ontologies.

In 2007 an effort has been started by the W3C OWL Working Group3 to
define a new version of the Web Ontology Language OWL – dubbed OWL
1.1. At the time of writing, the working group is still in early stages. However,
if, as expected, OWL DL 1.1 will be based on the standard Description Logic
technology, there should be no problem to use it in Web service descriptions
with the DL variant of WSML.

When the WSML effort started there was no standard rules language for
the Semantic Web. In fact, WSML-Flight and WSML-Rule can be seen as
efforts to define rules languages for the Web and they have been proposed
for standardization [35, 7]. In 2005 the W3C Rule Interchange Format (RIF)
working group4 set out to standardize a Web rules language. At the time of
writing, there preliminary versions of the RIF language specification and the
RIF RDF and OWL compatibility [22, 43] have been published. Since RIF
is a logical rule-based language, we expect there will be no problem in using
RIF with the rule-based variants of WSML.

3 http://www.w3.org/2007/OWL/
4 http://www.w3.org/2005/rules/



References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

2. Rama Akkiraju, Joel Farrell, John Miller, Meenakshi Nagarajan, Marc-Thomas
Schmidt, Amit Sheth, and Kunal Verma. Web service semantics - WSDL-S.
W3C Member Submission, November 2005. Available from: http://www.w3.
org/Submission/WSDL-S/.

3. H. Peter Alesso and Craig F. Smith. Developing Semantic Web services. AK
Peters, 2004.

4. Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web ser-
vices. Springer-Verlag, Berlin Heidelberg, 2004.

5. Anastasia Analyti, Grigoris Antoniou, Carlos Viegas Damásio, and Gerd Wag-
ner. Stable model theory for extended RDF ontologies. In Proceedings of the 4th
International Semantic Web Conference (ISWC2005), pages 21–36. Springer,
2005.

6. Tony Andrews et al. Business process execution language for web services ver-
sion 1.1. Technical report, BEA, IBM, Microsoft, SAP, Siebel, 2003. Available
from: http://www-106.ibm.com/developerworks/webservices/library/ws-
bpel/.

7. Jürgen Angele, Harold Boley, Jos de Bruijn, Dieter Fensel, Pascal Hitzler,
Michael Kifer, Reto Krummenacher, Holger Lausen, Axel Polleres, and Rudi
Studer. Web rule language (WRL). W3C Member Submission 09 September
2005, 2005. Available from: http://www.w3.org/Submission/WRL/.

8. Anupriya Ankolekar et al. OWL-S 1.1 release, 2004. Available from: http:
//www.daml.org/services/owl-s/1.1/.

9. Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. MIT
Press, 2004.

10. Daniel Austin, Abbie Barbir, Christopher Ferris, and Sharad Garg. Web ser-
vices architecture requirements. Working Group Note 11 February 2004, W3C,
2004. Available from: http://www.w3.org/TR/wsa-reqs/.

11. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook. Cambridge
University Press, 2003.

12. Franz Baader, Carsten Lutz, Maja Milicic, Ulrike Sattler, and Frank Wolter. In-
tegrating description logics and action formalisms: First results. In Proceedings



182 References

of the 20th National Conference on Artificial Intelligence (AAAI2005), Pitts-
burgh, PA, USA, 2005.

13. Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge University Press, 2003.

14. Dave Beckett. RDF/XML syntax specification (revised). Recommendation
10 February 2004, W3C, 2004. Available from: http://www.w3.org/TR/rdf-
syntax-grammar/.

15. David Beckett and Tim Berners-Lee. Turtle – terse RDF triple language. W3C
Team Submission 14 January 2008, 2008. Available from: http://www.w3.org/
TeamSubmission/turtle/.

16. Tom Bellwood et al. UDDI version 3.0, July 2002. Available from: http:

//uddi.org/pubs/uddi-v3.00-published-20020719.htm.
17. Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform resource iden-

tifiers (URI): Generic syntax. Standard RFC 3986, Internet Engineering Task
Force, 2005.

18. Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scien-
tific American, 284(5):34–43, May 2001.

19. Piergiorgio Bertoli, Jörg Hoffmann, Freddy Lécué, and Marco Pistore. Inte-
grating discovery and automated composition: from semantic requirements to
executable code. In Proceedings of the 2007 IEEE International Conference on
Web services (ICWS 2007), pages 815–822. IEEE Computer Society, 2007.

20. Paul V. Biron and Ashok Malhotra. XML schema part 2: Datatypes second
edition. Recommendation 28 October 2004, W3C, 2004. Available from: http:
//www.w3.org/TR/xmlschema-2/.

21. Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cam-
bridge Tracts in Theoretical Computer Science (No. 53). Cambridge University
Press, 2003.

22. Harold Boley and Michael Kifer. RIF basic logic dialect. Working Draft 30
October 2007, W3C, 2007. Available from: http://www.w3.org/TR/rif-bld/.

23. Lucas Bordeaux, Gwen Salaün, Daniela Berardi, and Massimo Mecella. When
are two web services compatible? In Ming-Chien Shan, Umeshwar Dayal,
and Meichun Hsu, editors, Technologies for E-Services, volume 3324 of Lec-
ture Notes in Computer Science, pages 15–28. Springer, 2004.

24. Egon Börger and Robert Stärk. Abstract State Machines: A Method for High-
Level System Design and Analysis. Springer, 2003.

25. Alex Borgida. On the relative expressiveness of description logics and predicate
logics. Artificial Intelligence, 82(1–2):353–367, 1996.

26. Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin. Namespaces
in XML 1.1 (second edition). Recommendation 16 August 2006, W3C, 2006.
Available from: http://www.w3.org/TR/xml-names11/.

27. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, Franois Yergeau,
and John Cowan. Extensible markup language (XML) 1.1 (second edition).
Recommendation 16 August 2006, W3C, 2006. Available from: http://www.
w3.org/TR/xml11/.

28. Dan Brickley and Ramanathan V. Guha. RDF vocabulary description language
1.0: RDF schema. Recommendation 10 February 2004, W3C, 2004. Available
from: http://www.w3.org/TR/rdf-schema/.

29. Jos de Bruijn. WSML abstract syntax and semantics. Working Draft D16.3
v0.3, WSML, 2007. Available from: http://www.wsmo.org/TR/d16/d16.3/v0.
3/.



References 183

30. Jos de Bruijn, Thomas Eiter, Axel Polleres, and Hans Tompits. On representa-
tional issues about combinations of classical theories with nonmonotonic rules.
In Proceedings of the 1st International Conference on Knowledge Science, En-
gineering and Management (KSEM2006), pages 1–22. Springer, 2006.

31. Jos de Bruijn, Thomas Eiter, Axel Polleres, and Hans Tompits. Embedding
non-ground logic programs into autoepistemic logic for knowledge-base com-
bination. In Proceedings of the 20th International Joint Conference on Artifi-
cial Intelligence (IJCAI2007), pages 304–309, Hyderabad, India, January 6–12
2007. AAAI Press.

32. Jos de Bruijn and Stijn Heymans. A semantic framework for language layering
in WSML. In Proceedings of the First International Conference on Web Rea-
soning and Rule Systems (RR2007), pages 103–117, Innsbruck, Austria, June
7–8 2007. Springer.

33. Jos de Bruijn and Stijn Heymans. WSML ontology semantics. Working Draft
d28.3, WSML Working Group, 2007. Available from: http://www.wsmo.org/
TR/d28/d28.3/v0.2/.

34. Jos de Bruijn and Stijn Heymans. On the relationship between description
logic-based and f-logic-based ontologies. Fundamenta Informaticae, 82(3):213–
236, 2008.

35. Jos de Bruijn, Holger Lausen, Axel Polleres, and Dieter Fensel. The WSML rule
languages for the semantic web. In Proceedings of the W3C Workshop on Rule
Languages for Interoperability, Washington DC, USA, April 2005. Position
paper.

36. Jos de Bruijn, David Pearce, Axel Polleres, and Agust́ın Valverde. Quanti-
fied equilibrium logic and hybrid rules. In Proceedings of the 1st International
Conference on Web Reasoning and Rule Systems (RR2007), pages 58–72, Inns-
bruck, Austria, June 7–8 2007. Springer.

37. Jos de Bruijn, Axel Polleres, Rubén Lara, and Dieter Fensel. OWL DL vs. OWL
Flight: Conceptual modeling and reasoning on the semantic web. In Proceedings
of the 14th International World Wide Web Conference (WWW2005), pages
623–632, Chiba, Japan, 2005. ACM.

38. Liliana Cabral, John Domingue, Stefania Galizia, Alessio Gugliotta, Barry Nor-
ton, Vlad Tanasescu, and Carlos Pedrinaci. IRS-III: A broker for semantic web
services based applications. In Proceedings of the 5th International Semantic
Web Conference (ISWC2006), Athens, Georgia, USA, Nov 2006.

39. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Conjunctive
query containment and answering under description logics constraints. Trans-
actions on Computational Logic (ToCL), 9(3), 2008. To be published.

40. Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weer-
awarana. Web services description language (WSDL) version 2.0 part 1:
Core language. Recommendation 26 June 2007, W3C, 2007. Available from:
http://www.w3.org/TR/wsdl20.

41. Kendall Grant Clark, Lee Feigenbaum, and Elias Torres. SPARQL protocol
RDF. Recommendation 15 January 2008, W3C, 2008. Available from: http:
//www.w3.org/TR/rdf-sparql-protocol/.

42. Michael Dahr. Deductive Databases: Theory and Applications. International
Thomson Publishing, December 1996.

43. Jos de Bruijn. RIF RDF and OWL compatibility. Working Draft 30 October
2007, W3C, 2007. Available from: http://www.w3.org/TR/rif-rdf-owl/.



184 References

44. Jos de Bruijn. Semantic Web Language Layering with Ontologies, Rules
and, Meta-Modeling. PhD thesis, Faculty of Mathematics, Computer Sci-
ence and Physics of the University of Innsbruck, Innsbruck, Austria, 2008.
Available from: http://www.debruijn.net/publications/debruijn-thesis-
final.pdf.

45. Jos de Bruijn. WSML/RDF. Working Draft D32v0.2, WSML Working Group,
2008. Available from: http://www.wsmo.org/TR/d32/v0.2/.

46. Mike Dean and Guus Schreiber. OWL web ontology language reference. Rec-
ommendation 10 February 2004, W3C, 2004. Available from: http://www.w3.
org/TR/owl-ref/.

47. Xin Dong, Alon Y. Halevy, Jayant Madhavan, Ema Nemes, and Jun Zhang.
Similarity search for web services. In Proceedings of the 13th International
Conference on Very Large Data Bases (VLDB2004), pages 372–383, 2004.

48. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf.
AL-log: integrating datalog and description logics. Journal of Intelligent In-
formation Systems, 10:227–252, 1998.

49. M. Duerst and M. Suignard. Internationalized resource identifiers (iris). Pro-
posed standard RFC 3987, Internet Engineering Task Force, 2005.

50. Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits.
A uniform integration of higher-order reasoning and external evaluations in
answer-set programming. In IJCAI 2005, pages 90–96, 2005.

51. Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits.
Combining answer set programming with description logics for the seman-
tic web. In Proceedings of the 9th International Conference on Principles of
Knowledge Representation and Reasoning (KR2004). AAAI Press, 2004.

52. Hebert B. Enderton. A Mathematical Introduction to Logic. Academic Press,
second edition edition, 2000.

53. David C. Fallside and Priscilla Walmsley. XML schema part 0: Primer second
edition. Recommendation 28 October 2004, W3C, 2004. Available from: http:
//www.w3.org/TR/xmlschema-0/.

54. Joel Farrell and Holger Lausen. Semantic annotations for WSDL and XML
schema. Recommendation 28 August 2007, W3C, 2007. Available from: http:
//www.w3.org/TR/sawsdl/.

55. Dieter Fensel. Ontologies: Silver Bullet for Knowledge Management and Elec-
tronic Commerce, 2nd edition. Springer-Verlag, Berlin, 2003.

56. Dieter Fensel, Mick Kerrigan, and Michal Zaremba, editors. Implementing
Semantic Web services: The SESA Framework. Springer, 2008.

57. Dieter Fensel, Holger Lausen, Axel Polleres, Jos de Bruijn, Michael Stollberg,
Dumitru Roman, and John Domingue. Enabling Semantic Web services – The
Web service Modeling Ontology. Springer, 2006.

58. Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer-
Verlag, second edition edition, 1996.

59. Melvin Fitting. First Order Logic and Automated Theorem Proving (second
edition). Springer Verlag, 1996.

60. Christiaan Fluit, Marta Sabou, and Frank van Harmelen. Supporting user
tasks through visualisation of light-weight ontologies. In Stefan Staab and
Rudi Studer, editors, Handbook on Ontologies in Information Systems, pages
415–434. Springer-Verlag, 2003.

61. Allen Van Gelder, Kenneth Ross, and John S. Schlipf. The well-founded se-
mantics for general logic programs. Journal of the ACM, 38(3):620–650, 1991.



References 185

62. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert A. Kowalski and Kenneth Bowen, editors, Proceedings
of the Fifth International Conference on Logic Programming, pages 1070–1080,
Cambridge, Massachusetts, 1988. The MIT Press.

63. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs
and disjunctive databases. New Generation Computing, 9(3/4):365–386, 1991.

64. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and Tim Berners-Lee.
Hypertext transfer protocol - http/1.1. Draft standard RFC 2616, Internet
Engineering Task Force, 1999.

65. Jan Grant and Dave Beckett. Rdf test cases. Recommendation, W3C, 2004.
Available from: http://www.w3.org/TR/rdf-testcases/.

66. Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Descrip-
tion logic programs: Combining logic programs with description logic. In Proc.
Intl. Conf. on the World Wide Web (WWW-2003), Budapest, Hungary, 2003.

67. W3C HTML Working Group. XHTML 1.0 the extensible hypertext markup
language (second edition). Recommendation 26 January 2000, revised 1 August
2002, W3C, 2002. Available from: http://www.w3.org/TR/xhtml1.

68. WSML Working Group. WSML language reference. Working Draft D16.1 v0.3,
WSML, 2008. Available from: http://www.wsmo.org/TR/d16/d16.1/v0.3/.

69. Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Hen-
rik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. Soap version 1.2 part
1: Messaging framework (second edition). Recommendation 27 April 2007,
W3C, 2007. Available from: http://www.w3.org/TR/soap12-part1/.

70. Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Hen-
rik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. Soap version 1.2 part
2: Adjuncts (second edition). Recommendation 27 April 2007, W3C, 2007.
Available from: http://www.w3.org/TR/soap12-part2/.

71. Yuri Gurevich. Evolving algebras 1993: Lipari Guide. In Egon Börger, editor,
Specification and Validation Methods, pages 9–37. Oxford University Press,
1994.

72. Armin Haller, Emilia Cimpian, Adrian Mocan, Eyal Oren, and Christoph Bus-
sler. Wsmx - a semantic service-oriented architecture. In Proceedings of the In-
ternational Conference on Web services (ICWS2005), Orlando, Florida, USA,
July 2005.

73. Patrick Hayes. RDF semantics. Technical report, W3C, 2004. W3C Recom-
mendation 10 February 2004. Available from: http://www.w3.org/TR/rdf-

mt/.
74. Jörg Hoffmann, Piergiorgio Bertoli, and Marco Pistore. Web service compo-

sition as planning, revisited: In between background theories and initial state
uncertainty. In Proceedings of the 22nd National Conference on Artificial In-
telligence (AAAI2007), pages 1013–1018, Vancouver, BC, Canada, 2007.

75. Matthew Horridge, Nick Drummond, John Goodwin, Alan Rector, Robert
Stevens, and Hai Wang. The manchester OWL syntax. In Proceedings of the
workshop OWL: Experiences and Directions 2006, Athens, GA, USA, 2006.

76. Ian Horrocks and Peter F. Patel-Schneider. A proposal for an OWL rules
language. In Proc. of the Thirteenth International World Wide Web Conference
(WWW 2004), pages 723–731. ACM, 2004.

77. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ
and RDF to OWL: The making of a web ontology language. Journal of Web
Semantics, 1(1):7–26, 2003.



186 References

78. Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for very
expressive description logics. Logic Journal of the IGPL, 8(3):239–264, May
2000.

79. Herman J. ter Horst. Combining RDF and part of OWL with rules: Semantics,
decidability, complexity. In Proceedings of the 4th International Semantic Web
Conference (ISWC 2005), Galway, Ireland, 2005.

80. Ian Jacobs. Architecture of the world wide web, volume one. Recommenda-
tion 15 December 2004, W3C, 2004. Available from: http://www.w3.org/TR/
webarch/.

81. Michael Kay. XSL transformations (XSLT) version 2.0. Recommendation 23
January 2007, W3C, 2007.

82. Uwe Keller, Rubén Lara, Holger Lausen, Axel Polleres, and Dieter Fensel.
Automatic location of services. In Proceedings of the 2nd European Semantic
Web Conference (ESWC2005), pages 1–16. Springer-Verlag, 2005.

83. Uwe Keller, Holger Lausen, and Michael Stollberg. On the semantics of func-
tional descriptions of web services. In Proceedings of the 3rd European Seman-
tic Web Conference (ESWC2006), pages 605–619, Budva, Montenegro, 2006.
Springer-Verlag.

84. Mick Kerrigan. Wsmoviz: An ontology visualization approach for wsmo. In
Proceedings of the 10th International Conference on Information Visualization
(IV06), London, England, July 2006.

85. Mick Kerrigan, Adrian Mocan, Martin Tanler, and Werner Bliem. Creating se-
mantic web services with the web service modeling toolkit (wsmt). In Proceed-
ings of the workshop on Making Semantics Work For Business (MSWFB2007)
at the 1st European Semantic Technology Conference (ESTC2007), Vienna,
Austria, May 2007.

86. Mick Kerrigan, Adrian Mocan, Martin Tanler, and Dieter Fensel. The web
service modeling toolkit - an integrated development environment for semantic
web services (system description). In Proceedings of the 4th European Semantic
Web Conference (ESWC2007), Innsbruck, Austria, June 2007.

87. Michael Kifer, Jos de Bruijn, Harold Boley, and Dieter Fensel. A realistic ar-
chitecture for the semantic web. In Proceedings of the International Conference
on Rules and Rule Markup Languages for the Semantic Web (RuleML-2005),
number 3791 in Lecture Notes in Computer Science, pages 17–29, Ireland,
Galway, November 2005. Springer.

88. Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-
oriented and frame-based languages. JACM, 42(4):741–843, 1995.

89. Michel C. A. Klein, Jeen Broekstra, Dieter Fensel, Frank van Harmelen, and
I. Horrocks. Ontologies and schema languages on the web. In D. Fensel,
J. Hendler, H. Lieberman, and W. Wahlster, editors, Spinning the Semantic
Web: Bringing the World Wide Web to Its Full Potential, pages 95–139. MIT
Press, Cambridge, MA, USA, 2003.

90. Graham Klyne and Jeremy J. Carroll. Resource description framework (RDF):
Concepts and abstract syntax. Recommendation 10 February 2004, W3C, 2004.

91. Rubén Lara, Dumitru Roman, Axel Polleres, and Dieter Fensel. A conceptual
comparison of WSMO and OWL-S. In European Conference on Web services
(ECOWS 2004), Erfurt, Germany, 2004.

92. Holger Lausen and Thomas Haselwanter. Finding web services. In 1st European
Semantic Technology Conference, Vienna, Austria, June 2007.



References 187

93. Alon Y. Levy and Marie-Christine Rousset. Combining horn rules and descrip-
tion logics in CARIN. Artificial Intelligence, 104:165 – 209, 1998.

94. Lei Li and Ian Horrocks. A software framework for matchmaking based on
semantic web technology. In Proceedings of the 12th International Conference
on the World Wide Web, pages 331–339, Budapest, Hungary, 2003.

95. Zhen Liu, Anand Ranganathan, and Anton Riabov. A planning approach for
message-oriented semantic web service composition. In Proceedings of the 22nd
National Conference on Artificial Intelligence (AAAI2007), pages 1389–1394,
Vancouver, BC, Canada, 2007.

96. John W. Lloyd. Foundations of Logic Programming (2nd edition). Springer-
Verlag, 1987.

97. John W. Lloyd and Rodney W. Topor. Making prolog more expressive. Journal
of Logic Programming, 1(3):225–240, 1984.

98. Ashok Malhotra, Jim Melon, and Norman Walsh. Xquery 1.0 and
xpath 2.0 functions and operators. Working draft, W3C, 2005.
http://www.w3.org/TR/xpath-functions/.

99. V. Wiktor Marek and Miroslaw Truszczynski. Stable semantics for logic pro-
grams and default theories. In Proceedings of the North American Confer-
ence on Logic Programming, pages 243–256, Cleveland, Ohio, USA, 1989. MIT
Press.

100. A. Martens. On compatibility of web services. Petri Net Newsletter, 65:12–20,
2003.

101. A. Martens. Simulation and equivalence between bpel process models, 2005.
102. Dean Martin et al. Owl-s: Semantic markup for web services. W3C

Member Submission, November 2004. Available from: http://www.w3.org/

Submission/OWL-S/.
103. Deborah L. McGuinness and Frank van Harmelen. OWL web ontology lan-

guage overview. Recommendation 10 February 2004, W3C, 2004. Available
from http://www.w3.org/TR/owl-features/.

104. Sheila McIlraith, Tran Cao Son, and Honglei Zeng. Semantic web services.
IEEE Intelligent Systems, Special Issue on the Semantic Web, 16(2):46–53,
2001.

105. Sun Microsystems. Sun ONE Architecture Guide. Sun, 2002.
106. Adrian Mocan and Emilia Cimpian. An ontology-based data mediation frame-

work for semantic environments. International Journal on Semantic Web and
Information Systems (IJSWIS), 3(2):66–95, 2007.

107. Boris Motik, Ian Horrocks, Riccardo Rosati, and Ulrike Sattler. Can owl and
logic programming live together happily ever after? In Proc. of the 5th Int.
Semantic Web Conf. (ISWC 2006), Athens, GA, USA, November 5 – 9 2006.

108. Boris Motik and Riccardo Rosati. A faithful integration of description logics
with logic programming. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI-07), Hyderabad, India, January
6–12 2007.

109. Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for OWL-
DL with rules. In Proceedings of 3rd International Semantic Web Conference
(ISWC2004), Hiroshima, Japan, November 2004.

110. Enrico Motta. Reusable Components for Knowledge Modelling. Case Studies
in Parametric Design Problem Solving, volume 53 of Frontiers in Artificial
Intelligence and Applications. IOS Press, 1999.



188 References

111. Anthony Nadalin, Chris Kaler, Phillip Hallam-Baker, and Ronald Monzillo.
Web services security: SOAP message security 1.0 (WS-Security 2004). Stan-
dard 200401, OASIS, 2004. Available from: http://docs.oasis-open.org/

wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf.
112. Srini Narayanan and Sheila A. McIlraith. Analysis and simulation of web

services. Computer Networks, 42(5):675–693, 2003.
113. Justin O’Sullivan, David Edmond, and Arthur H.M. ter Hofstede. Formal

description of non-functional service properties. Technical report, Queens-
land University of Technology, Brisbane, 2005. Available from: http://www.
service-description.com/.

114. M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara. Semantic matching
of web services capabilities. In Proceeding of The First International Semantic
Web Conference (ISWC2002), Sardinia, Italy, 2002.

115. Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL web ontology
language semantics and abstract syntax. Recommendation 10 February 2004,
W3C, 2004.

116. Axel Polleres, François Scharffe, and Roman Schindlauer. SPARQL++ for
mapping between RDF vocabularies. In OTM 2007, Part I : Proceedings of
the 6th International Conference on Ontologies, DataBases, and Applications
of Semantics (ODBASE 2007), pages 878–896, Vilamoura, Algarve, Portugal,
2007. Springer.

117. Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF.
Recommendation 15 January 2008, W3C, 2008. Available from: http://www.
w3.org/TR/rdf-sparql-query/.

118. Teodor C. Przymusinski. On the declarative and procedural semantics of logic
programs. Journal of Automated Reasoning, 5(2):167–205, 1989.

119. Alan Rector, Chris Welty, Natasha Noy, and Evan Wallace. Simple part-whole
relations in owl ontologies. Editor’s Draft 11 Aug 2005, W3C, 2005. Available
from: http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/.

120. Raymond Reiter. A logic for default reasoning. In Matthew L. Ginsberg,
editor, Readings in nonmonotonic reasoning, pages 68–93. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1987.

121. Dumitru Roman, Holger Lausen, and Uwe Keller. Web service modeling
ontology (WSMO). Final Draft D2v1.3, WSMO, 2006. Available from:
http://www.wsmo.org/TR/d2/v1.3/.

122. Dumitru Roman and James Scicluna. Ontology-based choreography of WSMO
services. Final Draft D14v0.3, WSMO, 2006. Available from: http://www.

wsmo.org/TR/d14/v0.3/.
123. Riccardo Rosati. Towards expressive KR systems integrating datalog and de-

scription logics: A preliminary report. In Proc. of the 1999 International De-
scription Logics workshop (DL99), pages 160–164, 1999.

124. Riccardo Rosati. On the decidability and complexity of integrating ontologies
and rules. Journal of Web Semantics, 3(1):61–73, 2005.

125. Riccardo Rosati. Semantic and computational advantages of the safe inte-
gration of ontologies and rules. In Proceedings of PPSWR2005, pages 50–64.
Springer-Verlag, 2005.

126. Riccardo Rosati. DL+log: Tight integration of description logics and disjunc-
tive datalog. In KR2006, 2006.



References 189

127. François Scharffe and Jos de Bruijn. A language to specify mappings between
ontologies. In Proceedings of the 1st International Conference on Signal-Image
Technology and Internet-Based Systems (SITIS2005), Yandoué, Cameroon,
November 2005. Dicolor Press.

128. Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The semantic web revisited.
IEEE Intelligent Systems, 21(3):96–101, May/June 2006.

129. Evren Sirin, Bijan Parsia, Dan Wu, James A. Hendler, and Dana S. Nau. HTN
planning for web service composition using SHOP2. Journal of Web Semantics,
1(4):377–396, 2004.

130. Nathalie Steinmetz. WSML-DL reasoner. Bachelor thesis, Digital En-
terprise Research Institute (DERI), University of Innsbruck, Austria., Au-
gust 2006. Available from: http://www.sti-innsbruck.at/teaching/theses/
completed/details/?uid=78.

131. Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen Srinivasan.
Automated discovery, interaction and composition of semantic web services.
Journal of Web Semantics, 1(1):27–46, 2003.

132. Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn.
XML schema part 1: Structures second edition. Recommendation 28 October
2004, W3C, 2004. Available from: http://www.w3.org/TR/xmlschema-1/.

133. Ioan Toma. WSML/XML. Working Draft D36 v0.1, WSML, 2008. Available
from: http://www.wsmo.org/TR/d36/v0.1/.

134. Ioan Toma, Douglas Foxvog, and Michael C. Jaeger. Modeling QoS character-
istics in WSMO. In Proceedings of the 1st workshop on Middleware for Service
Oriented Computing (MW4SOC 2006), pages 42–47, Melbourne, Australia,
2006.

135. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Vol-
ume I. Computer Science Press, 1988.

136. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Vol-
ume II. Computer Science Press, 1989.

137. Stuart Weibel, John Kunze, Carl Lagoze, and Misha Wolf. Dublin core meta-
data for resource discovery. RFC 2413, IETF, 1998.

138. Gio Wiederhold. Mediators in the architecture of future information systems.
IEEE Computer, 25(3):38–49, March 1992.

139. Amy Moormann Zaremski and Jeannette M. Wing. Specification matching
of software components. ACM Transactions on Software Engineering and
Methodology (TOSEM), 6(4):333–369, 1997.



Index

ABox, see Assertional knowledge

Behavioral description, see Choreogra-
phy

Behavioral model, 117, see Choreogra-
phy

Capability, 25
Set-based, 31, 100
State-based, 31, 107

Choreography, 26, 32, 118, 124
Choreography run, 123, 127
Consistency, 124, 129
Fulfillment, 131, 132
Grounding, 118, 125
Mode, 120, 125
Relation with capability, 129
State, 122, 125
State signature, 120, 124
Subsumption, 124, 128
Termination, 123, 128
Transition rule, 120, 124, 125

Discovery mechanism, 32, 100

eXtensible Markup Language, 10

Functional description, see Capability

HTML, 9
HTTP, 9

Internationalized Resource Identifier,
see Uniform Resource Identifier

IRS-III, 159

Match operator, 32

Namespace, 11, 39
NFP, see Non-Functional Properties
Non-Functional Properties, 26, 33

Ontologies, 31
Ontology entailment

Rule-based combination with
RDFS/OWL, 95

Rule-based variants, 83
WSML-DL, 79
WSML-DL combination with OWL

DL, 93
Ontology satisfiability

Rule-based combination with
RDFS/OWL, 95

Rule-based variants, 83
WSML-DL, 79
WSML-DL combination with OWL

DL, 93
OWL, see Web Ontology Language

QoS, see Quality of Service
Quality of Service, 27

RDF, see Resource Description
Framework

RDF Schema, 13
Reasoning

Assertional knowledge, 137
Knowledge-based systems, 136



192 Index

Ontology reasoning, 136
Rule-based WSML variants, 142

Datatypes, 149
Debugging support, 151
Metamodelling, 148
Transformation pipeline, 142

Terminological knowledge, 137
Translational approach, 140
WSML variants, 139
WSML-DL variant, 155

Transformation pipeline, 156
Resource Description Framework, 12

Use with WSML, 59

SAWSDL, see Semantic Annotations
for WSDL

SEE, see Semantic Execution Environ-
ment

Semantic Annotations for WSDL, 17
Semantic Execution Environment, 159,

173, 179
Semantic Web, 11
Service Oriented Architecture, 14
SOA, see Service Oriented Architecture
SOAP, 15
SPARQL, 59

Task ontology, 31
TBox, see Terminological knowledge

Uniform Resource Identifier, 10, 39
URI, see Uniform Resource Identifier

Web, see World Wide Web
Web Ontology Language, 13

Use with WSML, 59
Web service discovery, 18, 25
Web Service Execution Environment,

159
Web Service Modeling Language, 29

Conceptual syntax, 40
Datatype wrappers, 39
Design principles, 33
Logical expression syntax, 44
RDF exchange syntax, 56
Surface syntax, 38
Variants, 36
XML exchange syntax, 56

Web Service Modeling Ontology, 23
Goals, 24
Mediators, 24
Web services, 23

Web Service Modeling Toolkit, 159
Discovery view, 172
Form-based editor, 163
Navigator view, 169
Outline view, 167
Problems view, 170
Reasoner view, 171
Text editor, 162
WSML Visualizer, 164

Web service usage process, 18
Web Services Description Language, 16
World Wide Web, 9
WSDL, see Web Services Description

Language
WSML, see Web Service Modeling

Language
WSML/RDF, 57
WSML/XML, 56
WSML2Reasoner, 141, 153, 171
WSMO, see Web Service Modeling

Ontology
WSMO4J, 168
WSMT, see Web Service Modeling

Toolkit
WSMX, see Web Service Execution

Environment

XML, see eXtensible Markup Language




